Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays

Abstract

Magneto-chiral dichroism is a non-reciprocal—that is, directional—effect observed in magnetized chiral systems, featuring an unbalanced absorption of unpolarized light depending on the direction of the magnetization. Despite the fundamental interest in a phenomenon breaking both parity and time-reversal symmetries, magneto-chiral dichroism is one of the least investigated aspects of light–matter interaction most likely because of the weakness of the effect in most reported experiments. Here we have exploited the element selectivity of hard X-ray radiation to investigate the magneto-chiral properties of enantiopure crystals of two isostructural molecular helicoidal chains comprising either cobalt(II) or manganese(II) ions. A strong magneto-chiral dichroism, with Kuhn asymmetry of the order of a few per cent, has been observed in the cobalt chains system, whereas it is practically absent for the manganese derivative. The spectral features of the X-ray magneto-chiral dichroism signal differ significantly from the natural and magnetic dichroic contributions and have been rationalized here using the multipolar expansion of matter–radiation interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the molecular magnetic helices and experimental set-up.
Figure 2: X-ray absorption and dichroic spectra of the [Co-NIT] helix.
Figure 3: X-ray absorption and dichroic spectra of the [Mn-NIT] helix.
Figure 4: Field dependence of magnetic and magneto-chiral dichroism of the [Co-NIT] helix.

Similar content being viewed by others

References

  1. Pasteur, L. La dissymétrie moléculaire. Conférence faite le 22 décembre 1883. Rev. Sci. 7, 2–6 (1884).

    Google Scholar 

  2. Bordacs, S. et al. Chirality of matter shows up via spin excitations. Nature Phys. 8, 734–738 (2012).

    Article  ADS  Google Scholar 

  3. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  4. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

  5. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  ADS  Google Scholar 

  6. Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nature Commun. 5, 3757 (2014).

    Article  ADS  Google Scholar 

  7. Wagnière, G. & Meier, A. The influence of a static magnetic field on the absorption coefficient of a chiral molecule. Chem. Phys. Lett. 93, 78–81 (1982).

    Article  ADS  Google Scholar 

  8. Groenewege, M. P. A theory of magneto-optical rotation in diamagnetic molecules of low symmetry. Mol. Phys. 5, 541–563 (1962).

    Article  ADS  Google Scholar 

  9. Barron, L. D. & Vrbancich, J. Magneto-chiral birefringence and dichroism. Mol. Phys. 51, 715–730 (1984).

    Article  ADS  Google Scholar 

  10. Baranova, N. B., Bogdanov, Y. V. & Zel’Dovich, B. Y. Electrical analog of the Faraday effect and other new optical effects in liquids. Opt. Commun. 22, 243–247 (1977).

    Article  ADS  Google Scholar 

  11. Rikken, G. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  ADS  Google Scholar 

  12. Goulon, J. et al. X-ray magnetochiral dichroism: A new spectroscopic probe of parity nonconserving magnetic solids. Phys. Rev. Lett. 88, 237401 (2002).

    Article  ADS  Google Scholar 

  13. Wagnière, G. H. On Chiralty and the Universal Asymmetry (Verlag Helvetica Chimica Acta, 2007).

    Book  Google Scholar 

  14. Guijarro, A. & Yus, M. The Origin of Chirality in the Molecules of Life (Royal Society of Chemistry, 2009).

    Google Scholar 

  15. Rikken, G. L. J. A. & Raupach, E. Enantioselective magnetochiral photochemistry. Nature 405, 932–935 (2000).

    Article  ADS  Google Scholar 

  16. Zel’dovich, Y. B. Electromagnetic interaction with parity violation. Sov. Phys. JETP 6, 1184–1186 (1958).

    ADS  Google Scholar 

  17. Vallet, M. et al. Observation of magnetochiral birefringence. Phys. Rev. Lett. 87, 183003 (2001).

    Article  ADS  Google Scholar 

  18. Kubota, M. et al. X-ray directional dichroism of a polar ferrimagnet. Phys. Rev. Lett. 92, 137401 (2004).

    Article  ADS  Google Scholar 

  19. Train, C. et al. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nature Mater. 7, 729–734 (2008).

    Article  ADS  Google Scholar 

  20. Kitagawa, Y., Segawa, H. & Ishii, K. Magneto-chiral dichroism of organic compounds. Angew. Chem. Int. Ed. 50, 9133–9136 (2011).

    Article  Google Scholar 

  21. Ceolín, M., Goberna-Ferrón, S. & Galán-Mascarós, J. R. Strong hard X-ray magnetochiral dichroism in paramagnetic enantiopure molecules. Adv. Mater. 24, 3120–3123 (2012).

    Article  Google Scholar 

  22. Cheong, S-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  ADS  Google Scholar 

  23. Khomskii, D. Classifying multiferroics: Mechanisms and effects. Physics 2, 20 (2009).

    Article  Google Scholar 

  24. Caneschi, A., Gatteschi, D., Rey, P. & Sessoli, R. Structure and magnetic-ordering of a ferrimagnetic helix formed by manganese(II) and a nitronyl nitroxide radical. Inorg. Chem. 30, 3936–3941 (1991).

    Article  Google Scholar 

  25. Caneschi, A. et al. Cobalt(II)-nitronyl nitroxide chains as molecular magnetic nanowires. Angew. Chem. Int. Ed. 40, 1760–1763 (2001).

    Article  Google Scholar 

  26. Cavigli, L., Sessoli, R., Gurioli, M. & Bogani, L. Second harmonic generation in a molecular magnetic chain. Phys. Status Solidi A 203, 1402–1408 (2006).

    Article  ADS  Google Scholar 

  27. Heintze, E. et al. Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs. Nature Mater. 12, 202–206 (2013).

    Article  ADS  Google Scholar 

  28. Glauber, R. J. Time-dependent statistic of the Ising model. J. Math. Phys. 4, 294–307 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  29. Bogani, L. et al. Finite-size effects in single chain magnets: An experimental and theoretical study. Phys. Rev. Lett. 92, 207204 (2004).

    Article  ADS  Google Scholar 

  30. Goulon, J. et al. X-ray optical activity: Applications of sum rules. JETP 97, 402–431 (2003).

    Article  ADS  Google Scholar 

  31. Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Article  ADS  Google Scholar 

  32. Szaller, D., Bordács, S. & Kézsmárki, I. Symmetry conditions for nonreciprocal light propagation in magnetic crystals. Phys. Rev. B 87, 014421 (2013).

    Article  ADS  Google Scholar 

  33. Alagna, L. et al. X-ray natural circular dichroism. Phys. Rev. Lett. 80, 4799–4802 (1998).

    Article  ADS  Google Scholar 

  34. Goulon, J., Rogalev, A. & Brouder, C. Comprehensive Chiroptical Spectroscopy 457–491 (John Wiley, 2012).

    Book  Google Scholar 

  35. Stewart, B. et al. Circular dichroism at the edge: Large X-ray natural CD in the 1s → 3d pre-edge feature of 2[Co(en)3Cl3] NaCl 6H2O. J. Am. Chem. Soc. 121, 10233–10234 (1999).

    Article  Google Scholar 

  36. Bunău, O. & Joly, Y. Self-consistent aspects of x-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).

    Article  Google Scholar 

  37. Kitagawa, Y., Miyatake, T. & Ishii, K. Magneto-chiral dichroism of artificial light-harvesting antenna. Chem. Commun. 48, 5091–5093 (2012).

    Article  Google Scholar 

  38. Rikken, G. & Raupach, E. Pure and cascaded magnetochiral anisotropy in optical absorption. Phys. Rev. E 58, 5081–5084 (1998).

    Article  ADS  Google Scholar 

  39. Caneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C. & Sessoli, R. Supramolecular interactions and magnetism of metal-radical chains. J. Chem. Soc. Dalton Trans. 3907–3912 (2000).

  40. Kibayashi, S., Takahashi, Y., Seki, S. & Tokura, Y. Magnetochiral dichroism resonant with electromagnons in a helimagnet. Nature Commun. 5, 4583 (2014).

    Article  ADS  Google Scholar 

  41. Carra, P., Jerez, A. & Marri, I. X-ray dichroism in noncentrosymmetric crystals. Phys. Rev. B 67, 045111 (2003).

    Article  ADS  Google Scholar 

  42. Lovesey, S. W. & Balcar, E. Quantum theory of natural circular, magneto-chiral and non-reciprocal linear dichroism. Phys. Scr. 81, 065703 (2010).

    Article  ADS  Google Scholar 

  43. Scagnoli, V. et al. Observation of orbital currents in CuO. Science 332, 696–698 (2011).

    Article  ADS  Google Scholar 

  44. Wagnière, G. Inverse magnetochiral birefringence. Phys. Rev. A 40, 2437–2440 (1989).

    Article  ADS  Google Scholar 

  45. Rogalev, A., Goulon, J., Goulon-Ginet, C. & Malgrange, C. in Magnetism and Synchrotron Radiation: Lecture Notes in Physics (eds Beaurepaire, E., Scheurer, F., Krill, G. & Kappler, J. P.) 61 (Springer, 2001).

    Google Scholar 

  46. Caneschi, A., Gatteschi, D., Rey, P. & Sessoli, R. Structure and magnetic-properties of ferrimagnetic chains formed by manganese(II) and nitronyl nitroxides. Inorg. Chem. 27, 1756–1761 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial contribution of the European Research Council through the AdG MolNanoMaS (267746). The support of ESRF through beamtime allocation (projects HE-3896 and HC-972) is acknowledged. We are indebted to Y. Joly for assistance in spectra simulation and to R. Caciuffo, Ph. Sainctavit and J. Villain for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and A.R. designed the experiment. A.C. synthesized the materials and grew the crystals. M-E.B. carried out preliminary crystallographic and magnetic analysis. M-E.B., M.M., L.P., R.S., F.W. and A.R. participated in the synchrotron experiments and analysed the data. F.W. simulated the XANES and XNCD spectra. R.S. and A.R. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Roberta Sessoli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sessoli, R., Boulon, ME., Caneschi, A. et al. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nature Phys 11, 69–74 (2015). https://doi.org/10.1038/nphys3152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing