Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signatures of the continuum electron phase in molecular strong-field photoelectron holography

Abstract

Laser-driven electron recollision is at the heart of the rapidly growing field of attosecond science. The recollision wavepacket is qualitatively described within the strong-field approximation, which commonly assumes tunnelling ionization and plane-wave propagation of the liberated electron in the continuum. However, with increasing experimental sophistication, refinements to this simple model have become necessary. Through careful modelling and measurements of laser-induced recollision holography using aligned N2 molecules, we demonstrate that the continuum electron wavepacket already carries a non-trivial spatial phase structure immediately following ionization. This effect is of rather general character: any molecule and any non-isotropic system that is ionized by a strong laser field will exhibit an offset in the phase of the continuum electron wavepacket. Specifically, this has important implications for any coherent scattering process in molecules, such as high-harmonic generation or laser-induced electron holography.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artist’s impression of the ionizing and recolliding wavepackets.
Figure 2: Measured and simulated photoelectron spectra showing the holographic interference.
Figure 3: Normalized difference (ND) plots.
Figure 4: Four field-free wavepacket scattering scenarios with corresponding final photoelectron spectra showing the holographic fringe pattern for each case.
Figure 5: Simulated two-dimensional continuum electron wavepackets.
Figure 6: Simulated three-dimensional continuum electron wavepackets.

Similar content being viewed by others

References

  1. Cowley, J. M. Twenty forms of electron holography. Ultramicroscopy 41, 335–348 (1992).

    Article  Google Scholar 

  2. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  Google Scholar 

  3. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  4. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

    Article  ADS  Google Scholar 

  5. Bian, X-B. et al. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses. Phys. Rev. A 84, 043420 (2011).

    Article  ADS  Google Scholar 

  6. Marchenko, T., Huismans, Y., Schafer, K. J. & Vrakking, M. J. J. Criteria for the observation of strong-field photoelectron holography. Phys. Rev. A 84, 053427 (2011).

    Article  ADS  Google Scholar 

  7. Hickstein, D. D. et al. Direct visualization of laser-driven electron multiple scattering and tunneling distance in strong-field ionization. Phys. Rev. Lett. 109, 073004 (2012).

    Article  ADS  Google Scholar 

  8. Huismans, Y. et al. Scaling laws for photoelectron holography in the midinfrared wavelength regime. Phys. Rev. Lett. 109, 013002 (2012).

    Article  ADS  Google Scholar 

  9. Bian, X-B. & Bandrauk, A. D. Attosecond time-resolved imaging of molecular structure by photoelectron holography. Phys. Rev. Lett. 108, 263003 (2012).

    Article  ADS  Google Scholar 

  10. Walker, B. et al. Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 1227–1230 (1994).

    Article  ADS  Google Scholar 

  11. L’Huillier, A. & Balcou, Ph. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

    Article  ADS  Google Scholar 

  12. Krausz, F. & Ivanov, M. Yu. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  13. Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  14. Bashkansky, M., Bucksbaum, P. H. & Schumacher, D. W. Asymmetries in above-treshold ionization. Phys. Rev. Lett. 60, 2458–2461 (1988).

    Article  ADS  Google Scholar 

  15. Brabec, T., Ivanov, M. Yu. & Corkum, P. B. Coulomb focusing in intense field atomic processes. Phys. Rev. A 54, R2551 (1996).

    Article  ADS  Google Scholar 

  16. Muth-Böhm, J., Becker, A. & Faisal, F. H. M. Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields. Phys. Rev. Lett. 85, 2280–2283 (2000).

    Article  ADS  Google Scholar 

  17. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    Article  ADS  Google Scholar 

  18. Akagi, H. et al. Laser tunnel ionization from multiple orbitals in HCl. Science 325, 1364–1367 (2009).

    Article  ADS  Google Scholar 

  19. Holmegaard, L. et al. Photoelectron angular distributions from strong-field ionization of oriented molecules. Nature Phys. 6, 428–432 (2010).

    Article  ADS  Google Scholar 

  20. Ivanov, M. Yu., Brabec, T. & Corkum, P. B. Coulomb corrections and polarization effects in high-intensity high-harmonic emission. Phys. Rev. A 54, 742–745 (1996).

    Article  ADS  Google Scholar 

  21. Comtois, D. et al. Observation of coulomb focusing in tunnelling ionization of noble gases. J. Phys. B 38, 1923 (2005).

    Article  ADS  Google Scholar 

  22. Le, A-T., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    Article  ADS  Google Scholar 

  23. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: Reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003).

    Article  ADS  Google Scholar 

  24. Spanner, M. & Patchkovskii, S. One-electron ionization of multielectron systems in strong nonresonant laser fields. Phys. Rev. A 80, 063411 (2009).

    Article  ADS  Google Scholar 

  25. Mairesse, Y. et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.D. acknowledges support from DAAD and DFG.

Author information

Authors and Affiliations

Authors

Contributions

M.M., A.S., D.M.V., P.B.C. and R.D. conceived and designed the experiments. M.M. and A.S. performed the experiments. M.M., A.S. and R.D. analysed the experimental data. M.S. and S.P. built the theoretical codes and analysis tools. M.S. provided the interpretation of the experimental data and performed the theoretical modelling. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to M. Spanner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2384 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 5101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meckel, M., Staudte, A., Patchkovskii, S. et al. Signatures of the continuum electron phase in molecular strong-field photoelectron holography. Nature Phys 10, 594–600 (2014). https://doi.org/10.1038/nphys3010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing