Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mammalian pitch sensation shaped by the cochlear fluid

Abstract

The perceived pitch of a complex harmonic sound changes if the partial tones of the sound are frequency shifted by a fixed amount. Simple mathematical rules are expected to govern perceived pitch, but these rules are violated in psychoacoustic experiments. Cognitive cortical processes are commonly held responsible for this discrepancy. Here, we demonstrate that this need not be the case. We show that human pitch perception can be reproduced with a biophysically motivated mesoscopic model of the cochlea, by fully recovering published psychoacoustical pitch-shift data and related physiological measurements from the cat cochlear nucleus. Our study suggests that perceived pitch can be attributed to combination tones in the presence of a cochlear fluid.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cochlear excitation for a complex two-tone stimulation (simulated).
Figure 2: Comparison of physiological and simulated combination tones.
Figure 3: Comparison of single Hopf element with compound cochlea and biological data.
Figure 4: Pitch extraction.
Figure 5: Pitch-shift experiment.
Figure 6: Section diagram.

Similar content being viewed by others

References

  1. Helmholtz, H. von. Die Lehre von den Tonempfindungen als physiologische Grundlage Für die Theorie der Musik (Vieweg, 1863).

    MATH  Google Scholar 

  2. Ohm, G. S. Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann. Phys. Chem. 59, 513–565 (1843).

    Article  ADS  Google Scholar 

  3. Seebeck, A. Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Phys. Chem. 53, 417–436 (1841).

    Article  ADS  Google Scholar 

  4. Turner, R. S. The Ohm–Seebeck dispute, Hermann von Helmholtz, and the origins of physiological acoustics. Br. J. Hist. Sci. 10, 1–24 (1977).

    Article  MathSciNet  Google Scholar 

  5. Martignoli, S. & Stoop, R. Local cochlear correlations of perceived pitch. Phys. Rev. Lett. 105, 048101 (2010).

    Article  ADS  Google Scholar 

  6. Smoorenburg, G. F. Pitch perception of two-frequency stimuli. J. Acoust. Soc. Am. 48, 924–942 (1970).

    Article  ADS  Google Scholar 

  7. Cheveigné, A. in Pitch (eds Plack, C., Fay, R., Oxenham, A. & Popper, A.) 169–233 (Springer, 2005).

    Book  Google Scholar 

  8. Seebeck, A. Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Phys. Chem. 53, 417–436 (1841).

    Article  ADS  Google Scholar 

  9. Schouten, J. F. De toonhoogtegewaarwording. Philips Technisch Tijdschr. 5, 298–306 (1940).

    Google Scholar 

  10. de Boer, E. Pitch of inharmonic signals. Nature 178, 535–536 (1956).

    Article  ADS  Google Scholar 

  11. Schouten, J. F., Ritsma, R. J. & Lopes Cardozo, B. Pitch of the residue. J. Acoust. Soc. Am. 34, 1418–1424 (1962).

    Article  ADS  Google Scholar 

  12. Chialvo, D. R., Calvo, O., Gonzalez, D. L., Piro, O. & Savino, G. V. Subharmonic stochastic synchronization and resonance in neuronal systems. Phys. Rev. E 65, 050902 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  13. Licklider, J. A duplex theory of pitch perception. Cell. Mol. Life Sci. 7, 128–134 (1951).

    Article  Google Scholar 

  14. Cariani, P. & Delgutte, B. Neural correlates of the pitch of complex tones: I. Pitch and pitch salience. J. Neurophysiol. 76, 1698–1716 (1996).

    Article  Google Scholar 

  15. Goldstein, J. L. & Kiang, N. Y. S. Neural correlates of the aural combination tone 2f1 − f2. Proc. IEEE 56, 981–992 (1968).

    Article  Google Scholar 

  16. Goldstein, J. L. Auditory nonlinearity. J. Acoust. Soc. Am. 41, 676–699 (1967).

    Article  ADS  Google Scholar 

  17. Robles, L., Ruggero, M. A. & Rich, N. C. Two-tone distortion on the basilar membrane of the chinchilla cochlea. J. Neurophysiol. 77, 2385–2399 (1997).

    Article  Google Scholar 

  18. Martignoli, S., van der Vyver, J-J., Kern, A., Uwate, Y. & Stoop, R. Analog electronic cochlea with mammalian hearing characteristics. Appl. Phys. Lett. 91, 064108 (2007).

    Article  ADS  Google Scholar 

  19. Martignoli, S., Gomez, F. & Stoop, R. Pitch sensation involves stochastic resonance. Sci. Rep. 3, 2676 (2013).

    Article  ADS  Google Scholar 

  20. Rhode, W. S. Interspike intervals as a correlate of periodicity pitch in cat cochlear nucleus. J. Acoust. Soc. Am. 97, 2414 (1995).

    Article  ADS  Google Scholar 

  21. Barral, J. & Martin, P. Phantom tones and suppressive masking by active nonlinear oscillation of the hair-cell bundle. Proc. Natl Acad. Sci. USA 77, E1344–E1351 (2012).

    Article  Google Scholar 

  22. Whitham, G. Linear and Nonlinear Waves (Pure and Applied Mathematics Interscience Publishers, 1999).

    Book  Google Scholar 

  23. Kern, A. & Stoop, R. Essential role of couplings between hearing nonlinearities. Phys. Rev. Lett. 91, 128101 (2003).

    Article  ADS  Google Scholar 

  24. Kern, A., Heid, C., Steeb, W-H., Stoop, N. & Stoop, R. Biophysical parameters modification could overcome essential hearing gaps. PLoS Computat. Biol. 4, e1000161 (2008).

    Article  MathSciNet  Google Scholar 

  25. Kern, A. A Nonlinear Biomorphic Hopf-Amplifier Model of the Cochlea PhD thesis, ETH Zurich (2003).

  26. Stoop, R. & Kern, A. Two-tone suppression and combination tone generation as computations performed by the Hopf cochlea. Phys. Rev. Lett. 93, 268103 (2004).

    Article  ADS  Google Scholar 

  27. Steele, C. & Taber, L. Comparison of WKB calculations and experimental results for three-dimensional cochlear models. J. Acoust. Soc. Am. 80, 1007–1018 (1979).

    Article  ADS  Google Scholar 

  28. Wiesenfeld, K. & McNamara, B. Period-doubling systems as small-signal amplifiers. Phys. Rev. Lett. 55, 13–16 (1985).

    Article  ADS  Google Scholar 

  29. Wiesenfeld, K. & McNamara, B. Small-signal amplification in bifurcating dynamical systems. Phys. Rev. A 33, 629–642 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  30. Derighetti, B., Ravani, M., Stoop, R., Meier, P. F. & Brun, E. Period-doubling Lasers as Small-Signal Detectors. Phys. Rev. Lett. 55, 1746–1748 (1985).

    Article  ADS  Google Scholar 

  31. Eguíluz, V. M., Ospeck, M., Choe, Y., Hudspeth, A. J. & Magnasco, M. O. Essential nonlinearities in hearing. Phys. Rev. Lett. 84, 5232–5235 (2000).

    Article  ADS  Google Scholar 

  32. Camalet, S., Duke, T., Jülicher, F. & Prost, J. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl Acad. Sci. USA 97, 3183–3188 (2000).

    Article  ADS  Google Scholar 

  33. Martin, P. & Hudspeth, A. J. Compressive nonlinearity in the hair bundle’s active response to mechanical stimulation. Proc. Natl Acad. Sci. USA 98, 14386–14391 (2001).

    Article  ADS  Google Scholar 

  34. Lopez-Poveda, E. A., Plack, C. J. & Meddis, R. Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. J. Acoust. Soc. Am. 113, 951–960 (2003).

    Article  ADS  Google Scholar 

  35. Zwicker, E. Der ungewöhnliche Amplitudengang der nichtlinearen Verzerrungen des Ohres. Acustica 5, 67–74 (1955).

    Google Scholar 

  36. Cooper, N. P. & Rhode, W. S. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. J. Neurophysiol. 78, 261–270 (1997).

    Article  Google Scholar 

  37. Cotugno, D. De Aquaeductibus Auris Humane Internae (Dissertation, Simoniana Napoli, 1761).

    Google Scholar 

  38. Plomp, R. Pitch of complex tones. J. Acoust. Soc. Am. 41, 1526–1533 (1967).

    Article  ADS  Google Scholar 

  39. Ritsma, R. J. Frequencies dominant in the perception of the pitch of complex sounds. J. Acoust. Soc. Am. 42, 191–198 (1967).

    Article  ADS  Google Scholar 

  40. Gomez, F., Saase, V., Buchheim, N. & Stoop, R. How the ear tunes in to sounds: a physics approach. Phys. Rev. Appl. 1, 014003 (2014).

    Article  ADS  Google Scholar 

  41. Van der Vyver, J-J. A Biomorphic Electronic Hopf Cochlea PhD thesis, ETH Zurich (2006).

  42. Magnasco, M. O. A wave traveling over a Hopf instability shapes the cochlear tuning curve. Phys. Rev. Lett. 90, 058101 (2003).

    Article  ADS  Google Scholar 

  43. Jülicher, F. & Duke, T. Active traveling wave in the cochlea. Phys. Rev. Lett. 90, 158101 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to A. Kern for very helpful remarks regarding his earlier work on the hydrodynamic foundations of our approach and we acknowledge the financial support of the Swiss National Science Foundation SNF to R.S. (grant 200020-147010/1).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to Ruedi Stoop.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, F., Stoop, R. Mammalian pitch sensation shaped by the cochlear fluid. Nature Phys 10, 530–536 (2014). https://doi.org/10.1038/nphys2975

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing