Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Recent advances in nuclear physics through on-line isotope separation

Abstract

Nuclear physics is advancing rapidly at the precision frontier, where measurements of nuclear observables are challenging state-of-the-art nuclear models. A major contribution is associated with the increasing availability of accelerated beams of radioactive ions produced using the isotope separation on-line technique. These advances have come hand in hand with significant progress in the development of high-efficiency detector systems and improved target technologies which are invaluable in exploiting these beams to their full advantage. This article reviews some of the recent highlights in the field of nuclear structure profiting from these technological advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the technique of Coulomb excitation applied to determination of nuclear shape.
Figure 2: Schematic of a single-particle transfer reaction (specifically a (d,p) reaction) in inverse kinematics with radioactive beam.

Similar content being viewed by others

References

  1. Wiescher, M., Käppeler, F. & Langanke, K. Critical reactions in contemporary nuclear astrophysics. Annu. Rev. Astron. Astrophys. 50, 165–210 (2012).

    Article  ADS  Google Scholar 

  2. Schatz, H. et al. rp-process nucleosynthesis at extreme temperature and density conditions. Phys. Rep. 294, 167–263 (1998).

    Article  ADS  Google Scholar 

  3. Epelbaum, E., Krebs, H., Lee, D. & Meissner, U-G. Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192501 (2011).

    Article  ADS  Google Scholar 

  4. Bohr, Aa. & Mottelson, B. R. Nuclear Structure. Volume 1: Single-particle Models (World Scientific, 1998).

    Book  Google Scholar 

  5. Bohr, Aa. & Mottelson, B. R. Nuclear Structure. Volume 2: Nuclear Deformation (World Scientific, 1998).

    Book  Google Scholar 

  6. Rowe, D. J. & Wood, J. L. Fundamentals of Nuclear Models (World Scientific, 2010).

    Book  Google Scholar 

  7. Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).

    Article  ADS  Google Scholar 

  8. Carroll, R. J. et al. Blurring the boundaries: Decays of multiparticle isomers at the proton drip line. Phys. Rev. Lett. 112, 092501 (2014).

    Article  ADS  Google Scholar 

  9. Hansen, P. G. in The SC: ISOLDE and Nuclear Structure Vol. 3 (ed. Krige, J.) 327–413 (North Holland, 1997).

    Google Scholar 

  10. Huyse, M. & Raabe, R. Radioactive ion beam physics at the Cyclotron Research Centre Louvain-la-Neuve. J. Phys. G 38, 024001 (2011).

    Article  ADS  Google Scholar 

  11. Fedosseev, V. N., Kurdyravtsev, Yu. & Mishin, V. I. Resonance laser ionization of atoms for nuclear physics. Phys. Scr. 85, 058104 (2012).

    Article  ADS  Google Scholar 

  12. Rothe, S. et al. Measurement of the first ionization potential of astatine by laser ionization spectroscopy. Nature Commun. 4, 1835 (2013).

    Article  ADS  Google Scholar 

  13. Benlliure, J. Recent highlights on fragmentation reactions. J. Phys. Conf. Ser. 312, 082001 (2011).

    Article  Google Scholar 

  14. Schwarz, S. et al. The NSCL cyclotron gas stopper—under construction. Nucl. Instrum. Methods B 317, 464–466 (2013).

    Article  ADS  Google Scholar 

  15. Navin, A., de Oliviera Santos, F., Roussel-Chomaz, P. & Sorlin, O. Nuclear structure and reaction studies at SPIRAL. J. Phys. G 38, 024004 (2011).

    Article  ADS  Google Scholar 

  16. Ball, G. C. et al. Physics with reaccelerated radioactive beams at TRIUMF-ISAC. J. Phys. G 38, 024003 (2011).

    Article  ADS  Google Scholar 

  17. Habs, D. et al. The REX-ISOLDE project. Hyperfine Interact. 129, 43–66 (2000).

    Article  ADS  Google Scholar 

  18. Van Duppen, P. & Riisager, K. Physics with REX-ISOLDE: From experiment to facility. J. Phys. G 38, 024005 (2011).

    Article  ADS  Google Scholar 

  19. Göppert Mayer, M. Nuclear configurations in the spin-orbit coupling model. I. Empirical evidence. Phys. Rev. 78, 16–21 (1950).

    Article  ADS  Google Scholar 

  20. Möller, P., Nix, J. R., Myers, W. D. & Swiatecki, W. J. Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995).

    Article  ADS  Google Scholar 

  21. Takahara, S., Tajima, N. & Shimizu, Y. R. Nuclear prolate-shape dominance with the Woods–Saxon potential. Phys. Rev. C 86, 064323 (2012).

    Article  ADS  Google Scholar 

  22. Stránský, P., Frank, A. & Bijker, R. On prolate shape dominance in nuclear deformation. J. Phys. Conf. Ser. 322, 012018 (2011).

    Article  Google Scholar 

  23. Heyde, K. & Wood, J. L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467–1521 (2011).

    Article  ADS  Google Scholar 

  24. Bender, M., Bonche, P. & Heenen, P-H. Shape coexistence in neutron-deficient Kr isotopes: Constraints on the single-particle spectrum of self-consistent mean-field models from collective excitations. Phys. Rev. C 74, 024312 (2006).

    Article  ADS  Google Scholar 

  25. Andreyev, A. N. et al. A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb. Nature 405, 430–433 (2000).

    Article  ADS  Google Scholar 

  26. Cheal, B. & Flanagan, K. T. Progress in laser spectroscopy at radioactive beam facilities. J. Phys. G 37, 113101 (2010).

    Article  ADS  Google Scholar 

  27. Cocolios, T. E. et al. Early onset of ground state deformation in neutron deficient polonium isotopes. Phys. Rev. Lett. 106, 052503 (2011).

    Article  ADS  Google Scholar 

  28. Gaffney, L. P. et al. Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in 184,186Hg and two-state mixing calculations. Phys. Rev. C 89, 024307 (2014).

    Article  ADS  Google Scholar 

  29. Alder, K., Bohr, A., Huus, T., Mottelson, B. & Winther, A. Study of nuclear structure by electromagnetic excitation with accelerated ions. Rev. Mod. Phys. 28, 432–542 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  30. Häusser, O. et al. Coulomb excitation of 28Si projectiles. Phys. Rev. Lett. 23, 320–323 (1969).

    Article  ADS  Google Scholar 

  31. Clement, E. et al. Shape coexistence in neutron-deficient krypton isotopes. Phys. Rev. C 75, 054313 (2007).

    Article  ADS  Google Scholar 

  32. Yao, J. M., Hagino, K., Li, Z. P., Meng, J. & Ring, P. Microscopic benchmark study of triaxiality in low-lying states of 76Kr. Phys. Rev. C 89, 054306 (2014).

    Article  ADS  Google Scholar 

  33. Hurst, A. M. et al. Measurement of the sign of the spectroscopic quadrupole moment for the 21+ state in 70Se: No evidence for oblate shape. Phys. Rev. Lett. 98, 072501 (2007).

    Article  ADS  Google Scholar 

  34. Ljungvall, J. et al. Shape coexistence in light Se isotopes: Evidence for oblate shapes. Phys. Rev. Lett. 100, 102502 (2008).

    Article  ADS  Google Scholar 

  35. Bree, N. et al. Shape coexistence in the neutron-deficient even-even 182−188Hg isotopes studied via Coulomb excitation. Phys. Rev. Lett. 112, 162701 (2014).

    Article  ADS  Google Scholar 

  36. Butler, P. A. & Nazarewicz, W. Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys. 68, 349–421 (1996).

    Article  ADS  Google Scholar 

  37. Dobaczewski, J. & Engel, J. Nuclear time-reversal violation and the Schiff moment of 225Ra. Phys. Rev. Lett. 94, 232502 (2005).

    Article  ADS  Google Scholar 

  38. Gaffney, L. P. et al. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 497, 199–204 (2013).

    Article  ADS  Google Scholar 

  39. Savajols, H. et al. VAMOS: A variable mode high acceptance spectrometer for identifying reaction products induced by SPIRAL beams. Nucl. Instrum. Methods B 204, 146–153 (2003).

    Article  ADS  Google Scholar 

  40. Davids, B. S. & Davids, C. N. EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF. Nucl. Instrum. Methods A 544, 565–576 (2005).

    Article  ADS  Google Scholar 

  41. Hinke, C. B. et al. Superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn. Nature 486, 341–345 (2012).

    Article  ADS  Google Scholar 

  42. Jones, K. L. et al. The magic nature of 132Sn explored through the single-particle states of 133Sn. Nature 465, 454–457 (2010).

    Article  ADS  Google Scholar 

  43. Pain, S. D. et al. Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics. Nucl. Instrum. Methods B 261, 1122–1127 (2007).

    Article  ADS  Google Scholar 

  44. Diget, C. A. et al. SHARC: Silicon highly-segmented array for reactions and Coulex used in conjunction with the TIGRESS γ-ray spectrometer. J. Instrum. 6, P02005 (2011).

    Article  Google Scholar 

  45. Bildstein, V. et al. T-REX. Eur. Phys. J. A 48, 85 (2012).

    Article  ADS  Google Scholar 

  46. Warr, N. et al. The MINIBALL spectrometer. Eur. Phys. J. A 49, 40 (2013).

    Article  ADS  Google Scholar 

  47. Wuosmaa, A. H. et al. A solenoidal spectrometer for reactions in inverse kinematics. Nucl. Instrum. Methods A 580, 1290–1300 (2007).

    Article  ADS  Google Scholar 

  48. Lighthall, J. C. et al. Commissioning of the HELIOS spectrometer. Nucl. Instrum. Methods A 622, 97–106 (2010).

    Article  ADS  Google Scholar 

  49. http://www.ganil-spiral2.eu/spiral2

  50. http://www.triumf.ca/ariel

  51. Herlert, A. & Kadi, Y. The HIE-ISOLDE Project. J. Phys. Conf. Ser. 312, 052010 (2010).

    Article  Google Scholar 

  52. Grieser, M. et al. Storage ring at HIE-ISOLDE. Eur. Phys. J. 207, 1–117 (2012).

    Google Scholar 

Download references

Acknowledgements

Discussions with L. Gaffney are gratefully acknowledged. E. Power is thanked for producing the figures. P. Davies, D. Gilks, J. Henderson and D. Montanari are thanked for their careful reading of the manuscript. W. Power is thanked for her advice on formatting the text for a non-specialist reader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gareth Jenkins.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, D. Recent advances in nuclear physics through on-line isotope separation. Nature Phys 10, 909–913 (2014). https://doi.org/10.1038/nphys3165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing