Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations

Abstract

Understanding what controls the dynamics of the quasiparticle that results when a hole is doped into an antiferromagnetically ordered CuO2 layer is the first necessary step in the quest for a theory of the high-temperature superconductivity in cuprates. Here we show that the long-held belief that the quantum spin fluctuations of the antiferromagnetic background play a key role in determining this dynamics is wrong. Indeed, we demonstrate that the correct, experimentally observed quasiparticle dispersion is generically obtained for a three-band model describing the hole moving on the oxygen sublattice and coupled to a Néel lattice of spins without spin fluctuations. We argue that results from one-band model studies actually support this conclusion, and that this significant conceptual change in our understanding of this phenomenology opens the way to studying few-hole dynamics, to accurately gauge the strength of the ‘magnetic glue’ and its contribution to superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The models studied.
Figure 2: Results for the three-band model.
Figure 3: Role of various parameters.
Figure 4: Results for the five-band model.

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  Google Scholar 

  2. Emery, V. J. Theory of high-T c superconductivity in oxides. Phys. Rev. Lett. 58, 2794–2797 (1987).

    Article  ADS  Google Scholar 

  3. Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  ADS  Google Scholar 

  4. Lee, P. A., Nagaosa, N. & Wen, X-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  5. Ogata, M. & Fukuyama, H. The tJ model for the oxide high-T c superconductors. Rep. Prog. Phys. 71, 036501 (2008).

    Article  ADS  Google Scholar 

  6. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article  ADS  Google Scholar 

  7. Eskes, H. & Sawatzky, G. A. Tendency towards local spin compensation of holes in the high-Tc copper compounds. Phys. Rev. Lett. 61, 1415–1418 (1988).

    Article  ADS  Google Scholar 

  8. Wells, B. O. et al. E versus k relations and many body effects in the model insulating copper oxide Sr2CuO2Cl2 . Phys. Rev. Lett. 74, 964–967 (1995).

    Article  ADS  Google Scholar 

  9. Andersen, O. K., Liechtenstein, A. I., Jepsen, O. & Paulsen, F. LDA energy bands, low-energy Hamiltonians, t′, t′′, t(k) and J . J. Phys. Chem. Solids 56, 1573–1591 (1995).

    Article  ADS  Google Scholar 

  10. Leung, P. W., Wells, B. O. & Gooding, R. J. Comparison of 32-site exact-diagonalization results and ARPES spectral functions for the antiferromagnetic insulator Sr2CuO2Cl2 . Phys. Rev. B 56, 6320–6326 (1997).

    Article  ADS  Google Scholar 

  11. Damascelli, A., Hussain, Z. & Shen, Z-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  12. Ronning, F. et al. Universality of the electronic structure from a half-filled CuO2 plane. Phys. Rev. B 67, 035113 (2003).

    Article  ADS  Google Scholar 

  13. Pavarini, E., Dasgupta, I., Saha-Dasgupta, T., Jepsen, O. & Andersen, O. K. Band-structure trend in hole-doped cuprates and correlation with Tc, max . Phys. Rev. Lett. 87, 047003 (2001).

    Article  ADS  Google Scholar 

  14. Lau, B., Berciu, M. & Sawatzky, G. A. High-spin polaron in lightly doped CuO2 planes. Phys. Rev. Lett. 106, 036401 (2011).

    Article  ADS  Google Scholar 

  15. Möller, M., Sawatzky, G. A. & Berciu, M. Magnon-mediated interactions between fermions depend strongly on the lattice structure. Phys. Rev. Lett. 108, 216403 (2012).

    Article  ADS  Google Scholar 

  16. Lau, B., Berciu, M. & Sawatzky, G. A. Computational approach to a doped antiferromagnet: Correlations between two spin polarons in the lightly doped CuO2 plane. Phys. Rev. B 84, 165102 (2011).

    Article  ADS  Google Scholar 

  17. Berciu, M. Few-particle Green’s functions for strongly correlated systems on infinite lattices. Phys. Rev. Lett. 107, 246403 (2011).

    Article  ADS  Google Scholar 

  18. Hirsch, J. E. Effect of orbital relaxation on the band structure of cuprate superconductors and implications for the superconductivity mechanism. Preprint at http://arXiv.org./abs/1407.0042 (2014).

  19. Zaanen, J. & Oles, A. M. Canonical perturbation theory and the two-band model for high-Tc superconductors. Phys. Rev. B 37, 9423–9438 (1988).

    Article  ADS  Google Scholar 

  20. Ding, H-Q., Lang, G. H. & Goddard III, W. A. Band structure, magnetic fluctuations, and quasiparticle nature of the two-dimensional three-band Hubbard model. Phys. Rev. B 46, 14317–14320 (1992).

    Article  ADS  Google Scholar 

  21. Trugman, S. A. Interaction of holes in a Hubbard antiferromagnet and high-temperature superconductivity. Phys. Rev. B 37, 1597–1603 (1988).

    Article  ADS  Google Scholar 

  22. Berciu, M. & Fehske, H. Aharonov-Bohm interference for a hole in a two-dimensional Ising antiferromagnet in a transverse magnetic field. Phys. Rev. B 84, 165104 (2011).

    Article  ADS  Google Scholar 

  23. Emery, V. J. & Reiter, G. Mechanism for high-temperature superconductivity. Phys. Rev. B 38, 4547–4556 (1988).

    Article  ADS  Google Scholar 

  24. Frenkel, D. M., Gooding, R. J., Shraiman, B. I. & Siggia, E. D. Ground-state properties of a single oxygen hole in a CuO2 plane. Phys. Rev. B 41, 350–370 (1990).

    Article  ADS  Google Scholar 

  25. Petrov, Y. & Egami, T. Exact-diagonalization study of electron-lattice coupling in the effective two-band tJ model. Phys. Rev. B 58, 9485–9491 (1998).

    Article  ADS  Google Scholar 

  26. Sushkov, O. P., Sawatzky, G. A., Eder, R. & Eskes, H. Hole photoproduction in insulating copper oxide. Phys. Rev. B 56, 11769–11776 (1997).

    Article  ADS  Google Scholar 

  27. Harrison, W. A. Elementary Electronic Structure (World Scientific, 1999).

    Book  Google Scholar 

  28. Haverkort, M. W., Elfimov, I. S. & Sawatzky, G. A. Electronic structure and self energies of randomly substituted solids using density functional theory and model calculations. Preprint at http://arXiv.org./abs/1109.4036 (2011).

Download references

Acknowledgements

We thank B. Lau and W. Metzner for insightful comments. This work was funded by NSERC, QMI and CIfAR.

Author information

Authors and Affiliations

Authors

Contributions

H.E. and M.B. performed the numerical calculations. All authors contributed to the data analysis and the writing of the manuscript.

Corresponding author

Correspondence to Mona Berciu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimnejad, H., Sawatzky, G. & Berciu, M. The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations. Nature Phys 10, 951–955 (2014). https://doi.org/10.1038/nphys3130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing