Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation

Abstract

The electron–phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic X-ray scattering to monitor low-energy phonons in YBa2Cu3O6.6 (superconducting transition temperature Tc = 61 K), which is close to a charge-density-wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced line-shape renormalizations. These results imply that the electron–phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic ‘central peak’ due to CDW nanodomains is observed in a wide temperature range above and below Tc, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diffuse scattering mapping.
Figure 2: Room-temperature phonon dispersions along the high-symmetry lines Γ–Y, Y–T and T–Z.
Figure 3: Temperature dependence of the phonon spectra.
Figure 4: Temperature dependence of the phonon dispersion.
Figure 5: Temperature dependence of the central peak.

Similar content being viewed by others

References

  1. Gunnarsson, O. & Rösch, O. Interplay between electron–phonon and Coulomb interactions in cuprates. J. Phys. Condens. Matter 20, 043201 (2008).

    Article  ADS  Google Scholar 

  2. Capone, M., Castellani, C. & Grilli, M. Electron–phonon interaction in strongly correlated systems. Adv. Condens. Matter Phys. 2010, 920860 (2010).

    Article  Google Scholar 

  3. Reznik, D. Phonon anomalies and dynamic stripes. Physica C 481, 75–92 (2012).

    Article  ADS  Google Scholar 

  4. Savrasov, S. Y. & Andersen, O. K. Linear-response calculation of the electron–phonon coupling in doped CaCuO2 . Phys. Rev. Lett. 77, 4430–4433 (1996).

    Article  ADS  Google Scholar 

  5. Bohnen, K-P., Heid, R. & Krauss, M. Phonon dispersion and electron–phonon interaction for YBa2Cu3O7 from first-principles calculations. Europhys. Lett. 64, 104–110 (2003).

    Article  ADS  Google Scholar 

  6. Giustino, F., Cohen, M. L. & Louie, S. G. Small phonon contribution to the photoemission kink in the copper oxide superconductors. Nature 452, 975–978 (2008).

    Article  ADS  Google Scholar 

  7. Heid, R., Zeyher, R., Manske, D. & Bohnen, K-P. Phonon-induced pairing interaction in YBa2Cu3O7 within the local-density approximation. Phys. Rev. B 80, 024507 (2009).

    Article  ADS  Google Scholar 

  8. Cuk, T. et al. Coupling of the B1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ . Phys. Rev. Lett. 93, 117003 (2004).

    Article  ADS  Google Scholar 

  9. Devereaux, T. P., Cuk, T., Shen, Z. X. & Nagaosa, N. Anisotropic electron–phonon interaction in the cuprates. Phys. Rev. Lett. 93, 117004 (2004).

    Article  ADS  Google Scholar 

  10. Vishik, I. M. et al. Doping-dependent nodal Fermi velocity of the high-temperature superconductor Bi2Sr2CaCu2O8+ delta revealed using high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 104, 207002 (2010).

    Article  ADS  Google Scholar 

  11. Johnston, S. et al. Evidence for the importance of extended Coulomb interactions and forward scattering in cuprate superconductors. Phys. Rev. Lett. 108, 166404 (2012).

    Article  ADS  Google Scholar 

  12. Pintschovius, L. et al. Pronounced in-plane anisotropy of phonon anomalies in YBa2Cu3O6.6 . Phys. Rev. Lett. 89, 037001 (2002).

    Article  ADS  Google Scholar 

  13. Reznik, D. et al. Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006).

    Article  ADS  Google Scholar 

  14. Raichle, M. et al. Highly anisotropic anomaly in the dispersion of the copper–oxygen bond-bending phonon in superconducting YBa2Cu3O7 from inelastic neutron scattering. Phys. Rev. Lett. 107, 177004 (2011).

    Article  ADS  Google Scholar 

  15. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  ADS  Google Scholar 

  16. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    Article  ADS  Google Scholar 

  17. Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic x-ray scattering. Phys. Rev. Lett. 109, 167001 (2012).

    Article  ADS  Google Scholar 

  18. Blackburn, E. et al. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field. Phys. Rev. Lett. 110, 137004 (2013).

    Article  ADS  Google Scholar 

  19. Blanco-Canosa, S. et al. Momentum-dependent charge correlations in YBa2Cu3O6+δ superconductors probed by resonant X-Ray scattering: Evidence for three competing phases. Phys. Rev. Lett. 110, 187001 (2013).

    ADS  Google Scholar 

  20. Cowley, R. J. The phase transition of strontium titanate. Phil. Trans. R. Soc. Lond. A 354, 2799–2814 (1996).

    ADS  Google Scholar 

  21. Axe, J. D. & Shirane, G. Inelastic-neutron-scattering study of acoustic phonons in Nb3Sn. Phys. Rev. B 8, 1965–1977 (1973).

    Article  ADS  Google Scholar 

  22. Leroux, M. et al. Anharmonic suppression of charge density waves in 2H-NbS2 . Phys. Rev. B 86, 155125 (2012).

    Article  ADS  Google Scholar 

  23. Hoesch, M. et al. Giant Kohn anomaly and the phase transition in charge density wave ZrTe3 . Phys. Rev. Lett. 102, 086402 (2009).

    Article  ADS  Google Scholar 

  24. Andersen, N. H. et al. Superstructure formation and the structural phase diagram of YBa2Cu3O6+x . Physica C 317, 259–269 (1999).

    Article  ADS  Google Scholar 

  25. Strempfer, J. et al. Oxygen superstructures throughout the phase diagram of (Y,Ca)Ba2Cu3O6+x . Phys. Rev. Lett. 93, 157007 (2004).

    Article  ADS  Google Scholar 

  26. Bonnoit, C. J. et al. Probing electronic order via coupling to low energy phonons in superconducting Bi2Sr2−xLaxCuO6+δ. Preprint at http://arxiv.org/abs/1202.4994 (2012).

  27. Renker, B. et al. Observation of giant Kohn anomaly in the one-dimensional conductor K2Pt(CN)4Br0.3·3H2O. Phys. Rev. Lett. 30, 1144–1147 (1973).

    Article  ADS  Google Scholar 

  28. Weber, F. et al. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2 . Phys. Rev. Lett. 107, 107403 (2011).

    Article  ADS  Google Scholar 

  29. Castellani, C., Di Castro, C. & Grilli, M. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 75, 4650–4653 (1995).

    Article  ADS  Google Scholar 

  30. McElroy, K. et al. Relating atomic scale electronic phenomena to wave-like quasiparticle states in supercondconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003).

    Article  ADS  Google Scholar 

  31. Howald, C., Eisaki, H., Kaneko, N., Greven, M. & Kapitulnik, A. Periodic density-of-states modulations in superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. B 67, 014533 (2003).

    Article  ADS  Google Scholar 

  32. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  33. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008).

    Article  ADS  Google Scholar 

  34. Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high- Tc superconductor Bi2Sr2CaCu2O8+x . Nature 468, 677–680 (2010).

    Article  ADS  Google Scholar 

  35. Hinton, J. P. et al. New collective mode in YBa2Cu3O6+x observed by time-domain reflectometry. Phys. Rev. B 88, 060508 (2013).

    Article  ADS  Google Scholar 

  36. Torchinsky, D. H. et al. Fluctuating charge-density waves in a cuprate superconductor. Nature Mater. 12, 387–391 (2013).

    Article  ADS  Google Scholar 

  37. Aynajian, P. et al. Energy gaps and Kohn anomalies in elemental superconductors. Science 319, 1509–1512 (2008).

    Article  ADS  Google Scholar 

  38. Friedl, B., Thomsen, C. & Cardona, M. Determination of the superconducting gap in RBa2Cu3O7−δ . Phys. Rev. Lett. 65, 915–918 (1990).

    Article  ADS  Google Scholar 

  39. Bakr, M. et al. Electronic and phononic Raman scattering in detwinned YBa2Cu3O6.95 and Y0.85Ca0.15Ba2Cu3O6.95: s-wave admixture to the d x 2 - y 2 -wave order parameter. Phys. Rev. B 80, 064505 (2009).

    Google Scholar 

  40. LeBoeuf, D. et al. Thermodynamic phase diagram of static charge order in underdoped YBa2Cu3Oy . Nature Phys. 9, 79–83 (2013).

    Article  ADS  Google Scholar 

  41. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    Article  ADS  Google Scholar 

  42. Wu, T. et al. Emergence of charge order from the vortex state of a high-temperature superconductor. Nature Commun. 4, 2113 (2013).

    Article  ADS  Google Scholar 

  43. Khasanov, R. et al. Oxygen isotope effects on the superconducting transition and magnetic states within the phase diagram of Y1−xPrxBa2Cu3O7−δ . Phys. Rev. Lett. 101, 077001 (2008).

    Article  ADS  Google Scholar 

  44. Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and superconductors. Rev. Mod. Phys. 81, 45–108 (2009).

    Article  ADS  Google Scholar 

  45. Suchaneck, A. et al. Incommensurate magnetic order and dynamics induced by spinless impurities in YBa2Cu3O6.6 . Phys. Rev. Lett. 105, 037207 (2010).

    Article  ADS  Google Scholar 

  46. Blackburn, E. et al. Inelastic x-ray study of phonon broadening and charge-density wave formation in ortho-II-ordered YBa2Cu3O6.54 . Phys. Rev. B 88, 054506 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed at the ID28 (IXS) and ID29 (DS) beamlines of the European Synchrotron Radiation Facility. We gratefully acknowledge L. Braicovich, M. Calandra, R. Comin, A. Damascelli, T. Devereaux, M. H. Julien, A. F. Kemper, G. Khaliullin, O. Gunnarsson, G. A. Sawatzky and R. Zeyher for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.L.T., G.G. and B.K. managed the project. T.L. prepared and characterized the single crystal. A.B. performed the diffuse scattering experiment. M.L.T., A.B., S.M.S. and G.D. carried out the IXS experiment. M.L.T., S.M.S. and G.D. analysed the data. R.H. and K-P.B. performed calculations. M.L.T. and B.K. wrote the paper with helpful comments from all co-authors.

Corresponding authors

Correspondence to M. Le Tacon or B. Keimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Tacon, M., Bosak, A., Souliou, S. et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nature Phys 10, 52–58 (2014). https://doi.org/10.1038/nphys2805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing