Boson sampling for molecular vibronic spectra

Journal name:
Nature Photonics
Volume:
9,
Pages:
615–620
Year published:
DOI:
doi:10.1038/nphoton.2015.153
Received
Accepted
Published online

Abstract

Controllable quantum devices open novel directions to both quantum computation and quantum simulation. Recently, a problem known as boson sampling has been shown to provide a pathway for solving a computationally intractable problem without the need for a full quantum computer, instead using a linear optics quantum set-up. In this work, we propose a modification of boson sampling for the purpose of quantum simulation. In particular, we show that, by means of squeezed states of light coupled to a boson sampling optical network, one can generate molecular vibronic spectra, a problem for which no efficient classical algorithm is currently known. We provide a general framework for carrying out these simulations via unitary quantum optical transformations and supply specific molecular examples for future experimental realization.

At a glance

Figures

  1. Pictorial description of boson sampling and molecular vibronic spectroscopy.
    Figure 1: Pictorial description of boson sampling and molecular vibronic spectroscopy.

    a, Boson sampling consists of sampling the output distribution of photons obtained from quantum interference inside a linear quantum optical network. b, Vibronic spectroscopy uses coherent light to excite electronically an ensemble of identical molecules and measures the re-emitted (or scattered) radiation to infer the vibrational spectrum of the molecule. We show in this work how the fundamental physical process that underlies b is formally equivalent to situation a, together with a step to prepare a nonlinear step.

  2. Boson sampling apparatus for vibronic spectra.
    Figure 2: Boson sampling apparatus for vibronic spectra.

    a, The boson sampling apparatus modified according to a direct implementation of equation (9). b, The boson sampling apparatus modified according to equation (11). Here the difference with the usual set-ups for the typical boson sampling problem is confined to the preparation process of the input state. For simplification, . Green and red boxes after the first unitary operations represent the prepared initial states, which are identified as squeezed vacuum and squeezed coherent states, respectively. The wavy yellow lines that enter the interferometer represent the preoperative initial states, which are vacuum states in this figure. They could be non-vacuum states for the proposed extension of the theory.

  3. FCP (black sticks) of formic acid
    Figure 3: FCP (black sticks) of formic acid

    (11A′  12A′) for a symmetry block . The red curve is taken from the experimental spectrum in Leach et al.40

  4. FCP (black sticks) of thymine
    Figure 4: FCP (black sticks) of thymine

    (11A′  12A″). The red curve, whose FCP is shifted to be compared clearly, is taken from the experimental spectrum in Choi et al.29

References

  1. Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553558 (1992).
  2. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325328 (1997).
  3. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303332 (1999).
  4. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153185 (2014).
  5. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285291 (2012).
  6. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267276 (2012).
  7. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277284 (2012).
  8. Lloyd, S. Universal quantum simulators. Science 273, 10731077 (1996).
  9. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 17041707 (2005).
  10. Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M.-H. & Aspuru-Guzik, A. Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185207 (2011).
  11. Babbush, R., McClean, J., Wecker, D., Aspuru-Guzik, A. & Wiebe, N. Chemical basis of Trotter–Suzuki errors in quantum chemistry simulation. Phys. Rev. A 91, 022311 (2015).
  12. Aaronson, S. & Arkhipov, A. in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (eds Fortnow, L. & Vadhan, S.) 333342 (ACM, 2011).
  13. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798801 (2013).
  14. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794798 (2013).
  15. Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photon. 7, 545549 (2013).
  16. Tillmann, M. et al. Experimental boson sampling. Nature Photon. 7, 540544 (2013).
  17. Shchesnovich, V. S. Conditions for an experimental boson-sampling computer to disprove the extended Church–Turing thesis. Preprint at http://arxiv.org/abs/1403.4459v6 (2014).
  18. Rohde, P. P., Motes, K. R., Knott, P. A. & Munro, W. J. Will boson-sampling ever disprove the extended Church–Turing thesis? Preprint at http://arxiv.org/abs/1401.2199v2 (2014).
  19. Sharp, T. E. & Rosenstock, H. M. Franck–Condon factors for polyatomic molecules. J. Chem. Phys. 41, 34533463 (1964).
  20. Doktorov, E. V., Malkin, I. A. & Man'ko, V. I. Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck–Condon principle. J. Mol. Spectrosc. 64, 302326 (1977).
  21. Malmqvist, P.-Å. & Forsberg, N. Franck–Condon factors for multidimensional harmonic oscillators. Chem. Phys. 228, 227240 (1998).
  22. Ruhoff, P. T. & Ratner, M. A. Algorithm for computing Franck–Condon overlap integrals. Int. J. Quantum Chem. 77, 383392 (2000).
  23. Jankowiak, H.-C., Stuber, J. L. & Berger, R. Vibronic transitions in large molecular systems: rigorous prescreening conditions for Franck–Condon factors. J. Chem. Phys. 127, 234101 (2007).
  24. Santoro, F., Lami, A., Improta, R. & Barone, V. Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution. J. Chem. Phys. 126, 184102 (2007).
  25. Hachmann, J. et al. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2, 22412251 (2011).
  26. Gross, M. et al. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 405, 661665 (2000).
  27. Dierksen, M. & Grimme, S. The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of ‘exact’ Hartree–Fock exchange. J. Phys. Chem. A 108, 1022510237 (2004).
  28. Hayes, D., Wen, J., Panitchayangkoon, G., Blankenship, R. E. & Engel, G. S. Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. Faraday Discuss. 150, 459469 (2011).
  29. Choi, K.-W., Lee, J.-H. & Kim, S. K. Ionization spectroscopy of DNA base: vacuum-ultraviolet mass-analyzed threshold ionization spectroscopy of jet-cooled thymine. J. Am. Chem. Soc. 127, 1567415675 (2005).
  30. Duschinsky, F. The importance of the electron spectrum in multiatomic molecules. Concerning the Franck–Condon principle. Acta Physicochim. URSS 7, 551566 (1937).
  31. Ma, X. & Phodes, W. Multimode squeeze operators and squeezed states. Phys. Rev. A 41, 46254631 (1990).
  32. Scheel, S. Permanents in linear optical networks. Preprint at http://arxiv.org/abs/quant-ph/0406127 (2004).
  33. Huh, J. Unified Description of Vibronic Transitions with Coherent States. PhD thesis, Goethe Univ. Frankfurt (2011).
  34. Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).
  35. Santoro, F., Lami, A., Improta, R., Bloino, J. & Barone, V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: the Qx band of porphyrin as a case study. J. Chem. Phys. 128, 224311 (2008).
  36. Rahimi-Keshari, S., Lund, A. P. & Ralph, T. C. What can quantum optics say about complexity theory? Preprint at http://arxiv.org/abs/1408.3712v1 (2014).
  37. Olson, J. P., Seshadreesan, K. P., Motes, K. R., Rohde, P. P. & Dowling, J. P. Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling. Phys. Rev. A 91, 022317 (2015).
  38. Berger, R. & Klessinger, M. Algorithms for exact counting of energy levels of spectroscopic transitions at different temperatures. J. Comput. Chem. 18, 13121319 (1997).
  39. Berger, R., Fischer, C. & Klessinger, M. Calculation of the vibronic fine structure in electronic spectra at higher temperatures. 1. Benzene and pyrazine. J. Phys. Chem. 102, 71577176 (1998).
  40. Leach, S. et al. He I photoelectron spectroscopy of four isotopologues of formic acid: HCOOH, HCOOD, DCOOH and DCOOD. Chem. Phys. 286, 1543 (2003).
  41. Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nature Photon. 8, 621626 (2014).
  42. Josse, V., Sabuncu, M., Cerf, N., Leuchs, G. & Andersen, U. Universal optical amplification without nonlinearity. Phys. Rev. Lett. 96, 163602 (2006).
  43. Yoshikawa, J.-I. et al. Demonstration of deterministic and high fidelity squeezing of quantum information. Phys. Rev. A 76, 060301(R) (2007).
  44. Miwa, Y. et al. Exploring a new regime for processing optical qubits: squeezing and unsqueezing single photons. Phys. Rev. Lett. 113, 013601 (2014).
  45. Jerrum, M., Sinclair, A. & Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51, 671697 (2004).
  46. Huh, J., Neff, M., Rauhut, G. & Berger, R. Franck–Condon profiles in photodetachment–photoelectron spectra of HS2 and DS2 based on vibrational configuration interaction wavefunctions. Mol. Phys. 108, 409423 (2010).
  47. Huh, J. & Berger, R. Application of time-independent cumulant expansion to calculation of Franck–Condon profiles for large molecular systems. Faraday Discuss. 150, 363373 (2011).
  48. Huh, J. & Berger, R. Coherent state-based generating function approach for Franck–Condon transitions and beyond. J. Phys. Conf. Ser. 380, 012019 (2012).
  49. Kan, R. From moments of sum to moments of product. J. Multivariate Anal. 99, 542554 (2008).

Download references

Author information

Affiliations

  1. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA

    • Joonsuk Huh,
    • Gian Giacomo Guerreschi,
    • Borja Peropadre,
    • Jarrod R. McClean &
    • Alán Aspuru-Guzik

Contributions

J.H., G.G.G. and A.A.-G. conceived and designed the experiments. J.H. and G.G.G. performed the simulations. J.H., G.G.G., B.P. and J.R.M. contributed materials and/or analysis tools. J.H., G.G.G., B.P., J.R.M. and A.A.-G. worked on the theory, analysed the data and wrote the paper.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary information (338 KB)

    Supplementary information

Additional data