Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

Abstract

Quantum entanglement is a fundamental resource for secure information processing and communications, and hyperentanglement or high-dimensional entanglement has been separately proposed for its high data capacity and error resilience. The continuous-variable nature of the energy–time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here, we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both the energy and time domain. Long-postulated Hong–Ou–Mandel quantum revival is exhibited, with up to 19 time-bins and 96.5% visibilities. We further witness the high-dimensional energy–time entanglement through Franson revivals, observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 standard deviations while observing recurrent Clauser–Horne–Shimony–Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform for photon-efficient quantum communications towards the ultimate channel capacity through energy–time–polarization high-dimensional encoding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and quantum revival observations of the high-dimensional biphoton frequency comb.
Figure 2: Quantum frequency correlation measurement of the biphoton frequency comb.
Figure 3: Franson interference of the high-dimensional biphoton frequency comb.
Figure 4: Measured Franson interference around different relative delays of arm2.
Figure 5: High-dimensional hyperentanglement on polarization and energy–time basis.

Similar content being viewed by others

References

  1. Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nature Phys. 7, 677–680 (2011).

    Article  ADS  Google Scholar 

  2. Barreiro, J. T., Wei, T. C. & Kwiat, P. G. Beating the channel capacity of linear photonic superdense coding. Nature Phys. 4, 282–286 (2008).

    Article  Google Scholar 

  3. Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

    Article  ADS  Google Scholar 

  4. Krenn, M. et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl Acad. Sci. USA 111, 6243–6247 (2014).

    Article  ADS  Google Scholar 

  5. Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014).

    Article  ADS  Google Scholar 

  6. Howland, G. A. & Howell, J. C. Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera. Phys. Rev. X 3, 011013 (2013).

    Google Scholar 

  7. Bao, W.-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).

    Article  ADS  Google Scholar 

  8. Sun, F. W. et al. Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement. Europhys. Lett. 82, 24001 (2008).

    Article  ADS  Google Scholar 

  9. Badziag, P., Brukner, C., Laskowski, W., Pterek, T. & Zukowski, M. Experimentally friendly geometrical criteria for entanglement. Phys. Rev. Lett. 100, 140403 (2008).

    Article  ADS  Google Scholar 

  10. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    Article  ADS  Google Scholar 

  11. Fickler, R. et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nature Commun. 5, 4502 (2014).

    Article  ADS  Google Scholar 

  12. Leach, J. et al. Quantum correlations in optical angle–orbital angular momentum variables. Science 329, 662–665 (2010).

    Article  ADS  Google Scholar 

  13. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    Article  ADS  Google Scholar 

  14. Edgar, M. P. et al. Imaging high-dimensional spatial entanglement with a camera. Nature Commun. 3, 984 (2012).

    Article  ADS  Google Scholar 

  15. Dixon, P. B., Howland, G. A., Schneeloch, J. & Howell, J. C. Quantum mutual information capacity for high-dimensional entangled states. Phys. Rev. Lett. 108, 143603 (2012).

    Article  ADS  Google Scholar 

  16. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).

    Article  ADS  Google Scholar 

  17. Shalm, L. K. et al. Three-photon energy–time entanglement. Nature Phys. 9, 19–22 (2013).

    Article  ADS  Google Scholar 

  18. Cuevas, A. et al. Long-distance distribution of genuine energy–time entanglement. Nature Commun. 4, 2871 (2013).

    Article  ADS  Google Scholar 

  19. Thew, R. T., Acin, A., Zbinden, H. & Gisin, N. Bell-type test of energy–time entangled qutrits. Phys. Rev. Lett. 93, 010503 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  20. Lloyd, S., Shapiro, J. H. & Wong, F. N. C. Quantum magic bullets by means of entanglement. J. Opt. Soc. Am. B 19, 312–318 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  21. Ali-Khan, I., Broadbent, C. J. & Howell, J. C. Large-alphabet quantum key distribution using energy–time entangled bipartite states. Phys. Rev. Lett. 98, 060503 (2007).

    Article  ADS  Google Scholar 

  22. Zhong, T. et al. Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding. New J. Phys. 17, 022002 (2015).

    Article  ADS  Google Scholar 

  23. Takeda, S., Mizuta, T., Fuwa, M., van Loock, P. & Furusawa, A. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500, 315–318 (2013).

    Article  ADS  Google Scholar 

  24. Jayakumar, H. et al. Time-bin entangled photons from a quantum dot. Nature Commun. 5, 4251 (2014).

    Article  ADS  Google Scholar 

  25. Marcikic, I. et al. Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002).

    Article  ADS  Google Scholar 

  26. De Riedmatten, H. et al. Tailoring photonic entanglement in high-dimensional Hilbert spaces. Phys. Rev. A 69, 050304(R) (2004).

    Article  ADS  Google Scholar 

  27. Roslund, J., de Araújo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nature Photon. 8, 109–112 (2014).

    Article  ADS  Google Scholar 

  28. Pinel, O. et al. Generation and characterization of multimode quantum frequency combs. Phys. Rev. Lett. 108, 083601 (2012).

    Article  ADS  Google Scholar 

  29. Lu, Y. J., Campbell, R. L. & Ou, Z. Y. Mode-locked two-photon states. Phys. Rev. Lett. 91, 163602 (2003).

    Article  ADS  Google Scholar 

  30. Shapiro, J. H. Coincidence dips and revivals from a Type-II optical parametric amplifier. Technical Digest of Topical Conference on Nonlinear Optics, paper FC7-1, Maui, HI, 2002.

  31. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  32. Zhong, T., Wong, F. N. C., Roberts, T. D. & Battle, P. High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide. Opt. Express 17, 12019–12030 (2009).

    Article  ADS  Google Scholar 

  33. Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  34. Restelli, A. & Bienfang, J. C. Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes. Proc. SPIE. 8375, 83750Z (2012).

    Article  ADS  Google Scholar 

  35. Yuan, Z. L., Kardynal, B. E., Sharpe, A. W. & Shields, A. J. High speed single photon detection in the near infrared. Appl. Phys. Lett. 91, 041114 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Pittman, J. Franson and D. Fields for assistance, and A. Kumar Vinod, Y. Li, J. Poekert, M. Itzler, P. Li, D.R. Englund and X. Hu for discussions. This work is supported by the InPho programme of the Defense Advanced Research Projects Agency (DARPA) under contract no. W911NF-10-1-0416. Y.X.G. is supported by the National Natural Science Foundations of China (grant no. 11474050).

Author information

Authors and Affiliations

Authors

Contributions

Z.X., T.Z., S.S., X.X. and J.L. performed the measurements. J.C.B. and A.R. developed the 1.3 GHz detectors. T.Z., Y.X.G., F.N.C.W. and J.H.S. provided the theory and samples. All authors helped with manuscript preparation.

Corresponding authors

Correspondence to Zhenda Xie or Chee Wei Wong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Zhong, T., Shrestha, S. et al. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nature Photon 9, 536–542 (2015). https://doi.org/10.1038/nphoton.2015.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing