Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modified spontaneous emission in nanophotonic structures

Abstract

Spontaneous emission is not an inherent property of a luminescent material; rather, it arises due to interaction between the material and its local electromagnetic environment. Changing the environment can thus alter the emission rate, with potential applications in sensing, integrated photonics and solar energy conversion. Significant increases in emission rate require an optical resonator that stores light in as small a volume as possible, for as long as possible. This is currently achieved using two main systems: photonic crystal microcavities and plasmonic metal nanoparticles. These two systems have largely been developed independently, but the underlying physical mechanisms are the same. Comparing the two provides insight into emission modification and illustrates some of the subtleties involved in interpreting experimental results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics for understanding modified emission due to metal nanostructures.
Figure 2: Examples of metal nanostructures used for emission modification.
Figure 3: Examples of photonic crystal structures used for emission modification.
Figure 4: Controlled measurements of emission enhancement.
Figure 5: Potential applications of emission enhancement.

Similar content being viewed by others

References

  1. Merzbacher, E. Quantum Mechanics 3rd edn (Wiley, 1997).

    MATH  Google Scholar 

  2. Sakurai, J. J. Modern Quantum Mechanics, Revised Edition (Addison-Wesley, 1994).

    Google Scholar 

  3. Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd edn (Cambridge Univ. Press, 2012).

    Google Scholar 

  4. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  5. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    ADS  Google Scholar 

  6. Halas, N. J., Lal, S., Chang, W-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Google Scholar 

  7. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nature Nanotech. 10, 2–6 (2015).

    ADS  Google Scholar 

  8. Kristensen, P. T., Van Vlack, C. & Hughes, S. Generalized effective mode volume for leaky optical cavities. Opt. Lett. 37, 1649–1651 (2012).

    ADS  Google Scholar 

  9. Koenderink, A. F. On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208–4210 (2010).

    ADS  Google Scholar 

  10. Sauvan, C., Hugonin, J. P., Maksymov, I. S. & Lalanne, P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013).

    ADS  Google Scholar 

  11. Lackowicz, J. R. Principles of Fluorescence Spectroscopy 3rd edn (Springer, 2011).

    Google Scholar 

  12. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Google Scholar 

  13. Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005).

    ADS  Google Scholar 

  14. Bryant, G. W., García de Abajo, F. J. & Aizpurua, J. Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008).

    ADS  Google Scholar 

  15. Xu, Y., Lee, R. K. & Yariv, A. Quantum analysis and the classical analysis of spontaneous emission in a microcavity. Phys. Rev. A 61, 033807 (2000).

    ADS  Google Scholar 

  16. Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd edn (Artech House, 2005).

    MATH  Google Scholar 

  17. Drexhage, K. H. Influence of a dielectric interface on fluorescence decay time. J. Luminesc. 1, 693–701 (1970).

    ADS  Google Scholar 

  18. Drexhage, K. H. Interaction of light with monomolecular dye layers. Prog. Opt. 12, 163–232 (1974).

    ADS  Google Scholar 

  19. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    ADS  Google Scholar 

  20. Glass, A. M., Lioa, P. F., Bergman, J. G. & Olson, D. H. Interaction of metal particles with adsorbed dye molecules: absorption and luminescence. Opt. Lett. 5, 368–370 (1980).

    ADS  Google Scholar 

  21. Weitz, D. A., Garoff, S., Hanson, C. D., Gramila, T. J. & Gersten, J. I. Fluorescent lifetimes of molecules on silver-island films. Opt. Lett. 7, 89–91 (1982).

    ADS  Google Scholar 

  22. Pelton, M. & Bryant, G. Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013).

    Google Scholar 

  23. Dulkeith, E. et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002 (2002).

    ADS  Google Scholar 

  24. Maxwell, D. J., Taylor, J. R. & Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 124, 9606–9612 (2002).

    Google Scholar 

  25. Liu, N., Prall, B. S. & Klimov, V. I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 128, 15362–15363 (2006).

    Google Scholar 

  26. Tovmachenko, O. G., Graf, C., can den Heuvel, D. J., van Blaaderen, A. & Gerritsen, H. C. Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater. 18, 91–95 (2006).

    Google Scholar 

  27. Schneider, G. et al. Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett. 6, 530–536 (2006).

    ADS  Google Scholar 

  28. Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).

    ADS  Google Scholar 

  29. Fang, Y., Seong, N-H. & Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008).

    ADS  Google Scholar 

  30. Russel, K. J., Liu, T-L., Cui, S. & Hu, E. L. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon. 6, 459–462 (2012).

    ADS  Google Scholar 

  31. Rose, A. et al. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).

    ADS  Google Scholar 

  32. Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photon. 8, 835–840 (2014).

    ADS  Google Scholar 

  33. Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983).

    ADS  Google Scholar 

  34. Heinzen, D. J., Childs, J. J., Thomas, J. E. & Feld, M. S. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett. 58, 1320–1323 (1987).

    ADS  Google Scholar 

  35. Yokoyama, H. et al. Enhanced spontaneous emission from GaAs quantum wells in monolithic cavities. Appl. Phys. Lett. 57, 2814–2816 (1990).

    ADS  Google Scholar 

  36. Yamamoto, Y., Machida, S., Horikoshi, Y. & Igeta, K. Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity. Opt. Commun. 80, 337–342 (1991).

    ADS  Google Scholar 

  37. Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    ADS  Google Scholar 

  38. Solomon, G. S., Pelton, M. & Yamamoto, Y. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett. 86, 3903–3906 (2001).

    ADS  Google Scholar 

  39. Noda, S., Fujia, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    ADS  Google Scholar 

  40. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  41. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Google Scholar 

  42. Ogawa, S., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light emission by 3D photonic crystals. Science 305, 227–229 (2004).

    ADS  Google Scholar 

  43. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    ADS  Google Scholar 

  44. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Google Scholar 

  45. Aoki, K. et al. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photon. 2, 688–692 (2008).

    ADS  Google Scholar 

  46. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

    ADS  Google Scholar 

  47. Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (2005).

    ADS  Google Scholar 

  48. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Google Scholar 

  49. Wegner, J. et al. Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. Opt. Express 16, 3008–3020 (2008).

    ADS  Google Scholar 

  50. Cang, H., Liu, Y., Wang, Y., Yin, S. & Zhang, X. Giant suppression of photobleaching for single molecule detection via the Purcell effect. Nano Lett. 13, 5949–5953 (2013).

    ADS  Google Scholar 

  51. Munechika, K. et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett. 10, 2598–2603 (2010).

    ADS  Google Scholar 

  52. Kiraz, A. et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 3932–3934 (2001).

    ADS  Google Scholar 

  53. Gayral, B. & Gérard, J-M. Comment on “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity”. Phys. Rev. Lett. 90, 229701 (2003).

    ADS  Google Scholar 

  54. Solomon, G. S., Pelton, M. & Yamamoto, Y. Solomon, Pelton, and Yamamoto reply. Phys. Rev. Lett. 90, 227902 (2003).

    Google Scholar 

  55. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical antenna. Phys. Rev. Lett. 97, 017402 (2006).

    ADS  Google Scholar 

  56. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    ADS  Google Scholar 

  57. Aslan, K. et al. Metal-enhanced fluorescence: an emerging tool in biotechology. Curr. Opin. Biotech. 16, 55–62 (2005).

    Google Scholar 

  58. Sun, G., Khurgin, J. B. & Tsai, D. P. Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles. Opt. Lett. 9, 1583–1585 (2012).

    ADS  Google Scholar 

  59. Hale, G. G., Jackson, J. B., Shmakova, O. E., Lee, T. R. & Halas, N. J. Enhancing the active lifetime of luminescent semiconducting polymers via doping with metal nanoshells. Appl. Phys. Lett. 78, 1502–1504 (2001).

    ADS  Google Scholar 

  60. Schubert, E. F. et al. Highly efficient light-emitting diodes with microcavities. Science 265, 943–945 (1994).

    ADS  Google Scholar 

  61. Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).

    ADS  Google Scholar 

  62. Khurgin, J. B., Sun, G. & Soref, R. A. Electroluminescence efficiency enhancement using metal nanoparticles. Appl. Phys. Lett. 93, 021220 (2008).

    Google Scholar 

  63. Khurgin, J. B. & Sun, G. Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence. Opt. Express 20, 15309–15325 (2012).

    ADS  Google Scholar 

  64. Khurgin, J. B. & Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes. Nature Photon. 8, 468–473 (2014).

    ADS  Google Scholar 

  65. Santori, C., Pelton, M., Solomon, G. S., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    ADS  Google Scholar 

  66. Pelton, M. et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    ADS  Google Scholar 

  67. Chang, W-H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

    ADS  Google Scholar 

  68. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    ADS  Google Scholar 

  69. Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981).

    ADS  Google Scholar 

  70. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    ADS  Google Scholar 

  71. Löfving, S. Hemispherical emittance of rough metal surfaces. Appl. Phys. Lett. 36, 632–633 (1980).

    ADS  Google Scholar 

  72. Hesketh, P. J., Zemel, J. N. & Gebhart, B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature 324, 549–551 (1986).

    ADS  Google Scholar 

  73. Lin, S-Y. et al. Enhancement and suppression of thermal emission by a three-dimensional photonic crystal. Phys. Rev. B. 62, R2243–R2246 (2000).

    ADS  Google Scholar 

  74. Sai, H., Kanamori, Y. & Yugami, H. High-temperature resistive surface grating for spectral control of thermal radiation. Appl. Phys. Lett. 82, 1685–1687 (2003).

    ADS  Google Scholar 

  75. Lin, S. Y., Moreno, J. & Fleming, J. G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl. Phys. Lett. 83, 380–382 (2003).

    ADS  Google Scholar 

  76. Arpin, K. A. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nature Commun. 4, 2630 (2013).

    ADS  Google Scholar 

  77. Swanson, R. M. A proposed thermophotovoltaic solar energy conversion system. Proc. IEEE 67, 446–447 (1979).

    ADS  Google Scholar 

  78. Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nature Nanotech. 9, 126–130 (2014).

    ADS  Google Scholar 

  79. Greffet, J-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    ADS  Google Scholar 

  80. De Zoysa, M. et al. Conversion of broadband to narrowband thermal emission through energy recycling. Nature Photon. 6, 535–539 (2012).

    ADS  Google Scholar 

  81. Ouyang, F., Batson, P. E. & Isaacson, M. Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys. Rev. B 46, 15421–15425 (1992).

    ADS  Google Scholar 

  82. Ekardt, W. Work function of small metal particles: self-consistent spherical jellium-background model. Phys. Rev. B 29, 1558–1564 (1984).

    ADS  Google Scholar 

  83. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    ADS  Google Scholar 

  84. Hajisalem, G., Nezami, M. S. & Gordon, R. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 14, 6651–6654 (2014).

    ADS  Google Scholar 

  85. Kravtsov, V., Berweger, S., Atkin, J. M. & Raschke, M. B. Control of plasmon emission and dynamics at the transition from classical to quantum coupling. Nano Lett. 14, 5270–5275 (2014).

    ADS  Google Scholar 

  86. Andersen, M. L., Stobbe, S., Sørensen, A. S. & Lodahl, P. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters. Nature Phys. 7, 215–218 (2010).

    ADS  Google Scholar 

  87. Moskivits, M. Surface selection rules. J. Chem. Phys. 77, 4408–4416 (1982).

    ADS  Google Scholar 

  88. Bryant, G. W. Probing quantum nanostructures with near-field optical microscopy and vice versa. Appl. Phys. Lett. 72, 768–770 (1998).

    ADS  Google Scholar 

  89. Zurita-Sánchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement. J. Opt. Soc. Am. B 19, 1355–1362 (2002).

    ADS  Google Scholar 

  90. Zurita-Sánchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement. J. Opt. Soc. Am. B 19, 2722–2726 (2002).

    ADS  Google Scholar 

  91. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    ADS  Google Scholar 

  92. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity structure. Nature 432, 197–200 (2004).

    ADS  Google Scholar 

  93. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    ADS  Google Scholar 

  94. Waks, E. & Vučković, J. Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153061 (2006).

    Google Scholar 

  95. Chang, D. E., Sørensen, A. S., Demier, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    ADS  Google Scholar 

  96. Shah, R. A., Scherer, N. F., Pelton, M. & Gray, S. K. Ultrafast reversal of a Fano resonance in a plasmon-exciton system. Phys. Rev. B 88, 075411 (2013).

    ADS  Google Scholar 

  97. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    ADS  Google Scholar 

  98. Kim, H., Bose, R., Shen, T. C., Solomon, G. S. & Waks, E. A quantum logic gate between a solid-state quantum bit and a photon. Nature Photon. 7, 373–377 (2013).

    ADS  Google Scholar 

  99. Thon, S. M. et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl. Phys. Lett. 94, 111115 (2009).

    ADS  Google Scholar 

  100. Geiselmann, M., Marty, R., Renger, J., García de Abajo, F. J. & Quidant, R. Deterministic optical-near-field-assisted positioning of nitrogen vacancy centers. Nano Lett. 14, 1520–1525 (2014).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Pelton.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelton, M. Modified spontaneous emission in nanophotonic structures. Nature Photon 9, 427–435 (2015). https://doi.org/10.1038/nphoton.2015.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing