Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum cascade laser frequency stabilization at the sub-Hz level

Abstract

High-precision measurements with molecules may refine our knowledge of various fields of physics, from atmospheric and interstellar physics to the standard model or physics beyond it. Most of them can be cast as absorption frequency measurements, particularly in the mid-infrared ‘molecular fingerprint’ region, creating the need for narrow-linewidth lasers of well-controlled frequency. Quantum cascade lasers provide a wide spectral coverage anywhere in the mid-infrared, but show substantial free-running frequency fluctuations. Here, we demonstrate that the excellent stability and accuracy of an ultra-stable near-infrared laser, transferred from a metrological institute through a fibre link, can be copied to a quantum cascade laser using an optical frequency comb. The obtained relative stability and accuracy of 2 × 10−15 and 10−14 exceed those demonstrated so far with quantum cascade lasers by almost two orders of magnitude. This set-up enables us to measure molecular absorption frequencies with state-of-the-art uncertainties, confirming its potential for ultra-high-precision spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1:  Experimental set-up.
Figure 2: Assessment of the QCL frequency stability.
Figure 3: Characterization of frequency noises.
Figure 4:  QCL line shape and beat note with the MIR reference.
Figure 5:  OsO4 spectrum, in the vicinity of the R(14) emission line of CO2.

Similar content being viewed by others

References

  1. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  2. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  Google Scholar 

  3. Tokunaga, S. K. et al. Probing weak force-induced parity violation by high-resolution mid-infrared molecular spectroscopy. Mol. Phys. 111, 2363–2373 (2013).

    Article  ADS  Google Scholar 

  4. Baron, J. et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).

    Article  ADS  Google Scholar 

  5. De Angelis, M., Gagliardi, G., Gianfrani, L. & Tino, G. M. Test of the symmetrization postulate for spin-0 particles. Phys. Rev. Lett. 76, 2840–2843 (1996).

    Article  ADS  Google Scholar 

  6. Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. & Schiller, S. Vibrational spectroscopy of HD+ with 2-ppb accuracy. Phys. Rev. Lett. 98, 173002 (2007).

    Article  ADS  Google Scholar 

  7. Daussy, C. et al. First direct determination of the Boltzmann constant by an optical method: towards a new definition of the kelvin. Phys. Rev. Lett. 98, 250801 (2007).

    Article  ADS  Google Scholar 

  8. Moretti, L. et al. Determination of the Boltzmann constant by means of precision measurements of H2O line shapes at 1.39 µm. Phys. Rev. Lett. 111, 060803 (2013).

    Article  ADS  Google Scholar 

  9. Shelkovnikov, A., Butcher, R. J., Chardonnet, C. & Amy-Klein, A. Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008).

    Article  ADS  Google Scholar 

  10. Hudson, E. R., Lewandowski, H. J., Sawyer, B. C. & Ye, J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys. Rev. Lett. 96, 143004 (2006).

    Article  ADS  Google Scholar 

  11. Jansen, P., Bethlem, H. L. & Ubachs, W. Perspective: tipping the scales: search for drifting constants from molecular spectra. J. Chem. Phys. 140, 010901 (2014).

    Article  ADS  Google Scholar 

  12. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    Article  ADS  Google Scholar 

  13. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nature Photon. 6, 440–449 (2012).

    Article  ADS  Google Scholar 

  14. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  15. Yao, Y., Hoffman, A. J. & Gmachl, C. F. Mid-infrared quantum cascade lasers. Nature Photon. 6, 432–439 (2012).

    Article  ADS  Google Scholar 

  16. Bielsa, F. et al. HCOOH high resolution spectroscopy in the 9.18 µm region. J. Mol. Spec. 247, 41–46 (2008).

    Article  ADS  Google Scholar 

  17. Bartalini, S. et al. Frequency-comb-referenced quantum-cascade laser at 4.4 μm. Opt. Lett. 32, 988–990 (2007).

    Article  ADS  Google Scholar 

  18. Bressel, U., Ernsting, I. & Schiller, S. 5 µm laser source for frequency metrology based on difference frequency generation. Opt. Lett. 37, 918 (2012).

    Article  ADS  Google Scholar 

  19. Borri, S. et al. Direct link of a mid-infrared QCL to a frequency comb by optical injection. Opt. Lett. 37, 1011–1013 (2012).

    Article  ADS  Google Scholar 

  20. Cappelli, F. et al. Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 37, 4811–4813 (2012).

    Article  ADS  Google Scholar 

  21. Mills, A. A. et al. Coherent phase lock of a 9 µm quantum cascade laser to a 2 µm thulium optical frequency comb. Opt. Lett. 37, 4083–4085 (2012).

    Article  ADS  Google Scholar 

  22. Galli, I. et al. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy. Appl. Phys. Lett. 102, 121117 (2013).

    Article  ADS  Google Scholar 

  23. Hansen, M. G. et al. Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs. Opt. Express 21, 27043–27056 (2013).

    Article  ADS  Google Scholar 

  24. Sow, P. L. T. et al. A widely tunable 10-μm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy. Appl. Phys. Lett. 104, 264101 (2014).

    Article  ADS  Google Scholar 

  25. Tombez, L., Schilt, S., Hofstetter, D. & Südmeyer, T. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference. Opt. Lett. 38, 5079–5082 (2013).

    Article  ADS  Google Scholar 

  26. Acef, O. Metrological properties of CO2/OsO4 optical frequency standard. Opt. Commun. 134, 479–486 (1997).

    Article  ADS  Google Scholar 

  27. Bernard, V. et al. Spectral purity and long-term stability of CO2 lasers at the hertz level. IEEE J. Quantum Electron. QE-31, 1913–1918 (1995).

    Article  ADS  Google Scholar 

  28. Fasci, E. et al. Narrow-linewidth quantum cascade laser at 8.6 µm. Opt. Lett. 39, 4946–4949 (2014).

    Article  ADS  Google Scholar 

  29. Hagemann, C. et al. Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s. Opt. Lett. 39, 5102–5105 (2014).

    Article  ADS  Google Scholar 

  30. Guéna, J. et al. Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelec. Freq. Control 59, 391–410 (2012).

    Article  Google Scholar 

  31. Amy-Klein, A. et al. Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation. Opt. Lett. 30, 3320–3322 (2005).

    Article  ADS  Google Scholar 

  32. Chanteau, B. et al. Mid-infrared laser phase-locking to a remote near-infrared frequency reference for high-precision molecular spectroscopy. New J. Phys. 15, 073003 (2013).

    Article  ADS  Google Scholar 

  33. Vainio, M., Merimaa, M. & Halonen, L. Frequency-comb-referenced molecular spectroscopy in the mid-infrared region. Opt. Lett. 36, 4122–4124 (2011).

    Article  ADS  Google Scholar 

  34. Jiang, H. et al. Long-distance frequency transfer over an urban fiber link using optical phase stabilization. J. Opt. Soc. Am. B 25, 2029–2035 (2008).

    Article  ADS  Google Scholar 

  35. Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336, 441–444 (2012).

    Article  ADS  Google Scholar 

  36. Bernard, V. et al. CO2 laser stabilization to 0.1-Hz level using external electrooptic modulation. IEEE J. Quantum Electron. 33, 1282–1287 (1997).

    Article  ADS  Google Scholar 

  37. Ducos, F., Hadjar, Y., Rovera, G. D., Zondy, J. J. & Acef, O. Progress toward absolute frequency measurements of the 127I2-stabilized Nd:YAG laser at 563.2 THz/532 nm. IEEE Trans. Instrum. Meas. 50, 539–542 (2001).

    Article  Google Scholar 

  38. Elliott, D. S., Roy, R. & Smith, S. J. Extracavity laser band-shape and bandwidth modification. Phys. Rev. A 26, 12–18 (1982).

    Article  ADS  Google Scholar 

  39. Acef, O., Michaud, F. & Rovera, G. D. Accurate determination of OsO4 absolute frequency grid at 28/29 THz. IEEE Trans. Instrum. Meas. 48, 567–570 (1999).

    Article  Google Scholar 

  40. Chardonnet, C. & Borde, C. J. Hyperfine interactions in the ν3 band of osmium tetroxide: accurate determination of the spin-rotation constant by crossover resonance spectroscopy. J. Mol. Spectrosc. 167, 71–98 (1994).

    Article  ADS  Google Scholar 

  41. Chardonnet, C. Spectroscopie de saturation de hautes précision et sensibilité en champ laser fort. Applications aux molécules OsO 4 , SF 6 et CO 2 et à la métrologie des fréquences. Thèse de doctorat d’état, Université Paris 13 (1989).

  42. Daussy, C. et al. Long-distance frequency dissemination with a resolution of 10−17. Phys. Rev. Lett. 94, 203904 (2005).

    Article  ADS  Google Scholar 

  43. Salumbides, E. J. et al. Bounds on fifth forces from precision measurements on molecules. Phys. Rev. D 87, 112008 (2013).

    Article  ADS  Google Scholar 

  44. Karr, J. P. et al. High-accuracy calculations in the H2+ molecular ion: towards a measurement of mp/me Can. J. Phys. 85, 497–507 (2007).

    ADS  Google Scholar 

  45. Guinet, M., Mondelain, D., Janssen, C. & Camy-Peyret, C. Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument. J. Quant. Spectr. Rad. Transfer 111, 961–972 (2010).

    Article  ADS  Google Scholar 

  46. Schneider, M. & Hase, F. Improving spectroscopic line parameters by means of atmospheric spectra: theory and example for water vapor and solar absorption spectra. J. Quant. Spectr. Rad. Transfer 110, 1825–1839 (2009).

    Article  ADS  Google Scholar 

  47. Telle, H. R., Lipphardt, B. & Stenger, J. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1–6 (2002).

    Article  ADS  Google Scholar 

  48. Nicolodi, D. et al. Spectral purity transfer between optical wavelengths at the 10−18 level. Nature Photon. 8, 219–223 (2014).

    Article  ADS  Google Scholar 

  49. Zhang, W. et al. Characterizing a fiber-based frequency comb with electro-optic modulator. IEEE Trans. Ultrason. Ferroelec. Freq. Control 59, 432–438 (2012).

    Article  Google Scholar 

  50. Rohart, F. et al. Absorption line shape recovery beyond the detection bandwidth limit: application to the precision spectroscopic measurement of the Boltzmann constant. Phys. Rev. A 90, 042506 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P.-E. Pottie, G. Santarelli, R. Le Targat and W.-K. Lee for discussions as well as helping with the ultra-stable NIR lasers or the active compensated optical link. The authors also thank S. Tokunaga for reading the manuscript and for helping with linewidth calculations. The authors acknowledge financial support from the Centre National de la Recherche Scientifique, Agence Nationale de la Recherche (ANR BLANC LIOM 2011 BS04 009 01, ANR QUIGARDE 2012 ANR-12-ASTR-0028-03, ANR NCPCHEM 2010 BLAN 724 3, Labex First-TF ANR 10 LABX 48 01), Action Spécifique Gravitation, Références, Astronomie, Métrologie (GRAM) and Université Paris 13.

Author information

Authors and Affiliations

Authors

Contributions

B.A., B.C., O.L., Y.L.C. and A.A.K. conceived and designed the experiment. B.A., B.C., D.N., B.D. and A.A.K. performed the experiment. B.A., O.L., D.N., M.A., C.D., B.D., Y.L.C. and A.A.K. analysed the data. B.A., M.A., B.D., Y.L.C. and A.A.K. contributed materials/analysis tools. All authors discussed the results. B.A., O.L., D.N., M.A., C.C., C.D., B.D., Y.L.C. and A.A.K. wrote the paper.

Corresponding authors

Correspondence to Bérengère Argence or Anne Amy-Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argence, B., Chanteau, B., Lopez, O. et al. Quantum cascade laser frequency stabilization at the sub-Hz level. Nature Photon 9, 456–460 (2015). https://doi.org/10.1038/nphoton.2015.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing