Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint

Abstract

We have designed, fabricated and characterized an integrated-nanophotonics polarization beamsplitter with a footprint of 2.4 × 2.4 μm2, which is the smallest polarization beamsplitter ever demonstrated. A nonlinear optimization algorithm was used to design the device for λ0 = 1,550 nm. The polarization beamsplitter and the input/output waveguides can be fabricated in a single lithography step. Here, we experimentally show an average transmission efficiency of greater than 70% (peak transmission efficiency of 80%) and an extinction ratio greater than 10 dB within a bandwidth of 32 nm. Simulation results indicate that our device is tolerant to fabrication errors of up to ±20 nm in the device thickness. We also designed, fabricated and characterized a mode-converting polarization beamsplitter, which not only separates the two polarization states but also connects one multimode input waveguide to two single-mode output waveguides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nanophotonic polarization beamsplitter.
Figure 2: Experiment.
Figure 3: Experimental and simulated performance of the nanophotonic PBS.
Figure 4: Mode-converting PBS.
Figure 5: Experimental and simulated performance of the nanophotonic mode-converting PBS.

Similar content being viewed by others

References

  1. Manolatou, C. et al. High density integrated optics. J. Lightw. Technol. 17, 1682–1692 (1999).

    Article  ADS  Google Scholar 

  2. Fukuda, H. et al. Ultrasmall polarization splitter based on silicon wire waveguides. Opt. Express 14, 12401–12408 (2006).

    Article  ADS  Google Scholar 

  3. Yuan, W. et al. Mode-evolution-based polarization rotator-splitter design via simple fabrication process. Opt. Express 20, 10163–10169 (2012).

    Article  ADS  Google Scholar 

  4. Watts, M. R., Haus, H. A. & Ippen, E. P. Integrated mode-evolution-based polarization splitter. Opt. Lett. 30, 967–969 (2005).

    Article  ADS  Google Scholar 

  5. Hong, J. M. et al. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photon. Technol. Lett. 15, 72–74 (2003).

    Article  ADS  Google Scholar 

  6. Tu, Z. et al. A compact SOI polarization beam splitter based on multimode interference couple. Proc. SPIE, 8307, 830707 (2011).

    Article  Google Scholar 

  7. Dai, D., Wang, Z. & Bowers, J. E. Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Opt. Lett. 36, 2590–2592 (2011).

    Article  ADS  Google Scholar 

  8. Feng, J. & Zhou, Z. Polarization beam splitter using a binary blazed grating coupler. Opt. Lett. 32, 1662–1664 (2007).

    Article  ADS  Google Scholar 

  9. Yue, Y., Zhang, L., Yang, J.-Y., Beausoleil, R. G. & Willner, A. E. Silicon-on-insulator polarization splitter using two horizontally slotted waveguides. Opt. Lett. 35, 1364–1366 (2010).

    Article  ADS  Google Scholar 

  10. Kiyat, I., Aydinli, A. & Dagli, N. A compact silicon-on-insulator polarization splitter. IEEE Photon. Technol. Lett. 17, 100–102 (2005).

    Article  ADS  Google Scholar 

  11. Liu, T., Zakharian, A. R., Fallahi, M., Moloney, J. V. & Mansuripur, M. Design of a compact photonic-crystal-based polarizing beam splitter. IEEE Photon. Technol. Lett. 17, 1435–1437 (2005).

    Article  ADS  Google Scholar 

  12. Guan, X., Wu, H., Shi, Y., Wosinski, L. & Dai, D. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt. Lett. 38, 3005–3008 (2013).

    Article  ADS  Google Scholar 

  13. Sesay, M., Jin, X. & Ouyang, Z. Design of polarization beam splitter based on coupled rods in a square-lattice photonic crystal. J. Opt. Soc. Am. B 30, 2043–2047 (2013).

    Article  ADS  Google Scholar 

  14. Dai, D., Wang, Z., Peters, J. & Bowers, J. E. Compact polarization beam splitter using an asymmetrical Mach–Zehnder interferometer based on silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 24, 673–675 (2012).

    Article  ADS  Google Scholar 

  15. Soldano, L. B. et al. Mach–Zehnder interferometer polarization splitter in InGaAsP/InP. IEEE Photon. Technol. Lett. 6, 402–405 (1994).

    Article  ADS  Google Scholar 

  16. Lu, J. & Vučković, J. Nanophotonic computational design. Opt. Express 21, 13351–13367 (2013).

    Article  ADS  Google Scholar 

  17. Shen, B., Wang, P., Polson, R. & Menon, R. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express 22, 27175–27182 (2014).

    Article  ADS  Google Scholar 

  18. Piggott, A. Y. et al. Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci. Rep. 4, 7210 (2014).

    Article  Google Scholar 

  19. Kim, G., Dominguez-Caballero, J.-A., Lee, H., Friedman, D. J. & Menon, R. Increased photovoltaic power output via diffractive spectrum separation. Phys. Rev. Lett. 110, 123901 (2013).

    Article  ADS  Google Scholar 

  20. Shen, B., Wang, P., Polson, R. & Menon, R. Ultra-high-efficiency metamaterial polarizer. Optica 1, 356–360 (2014).

    Article  ADS  Google Scholar 

  21. Wang, P. & Menon, R. Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express 22, A99–A110 (2014).

    Article  ADS  Google Scholar 

  22. Shen, B., Wang, P. & Menon, R. Optimization and analysis of 3D nanostructures for power-density enhancement in ultra-thin photovoltaics under oblique illumination. Opt. Express 22, A311–A319 (2014).

    Article  ADS  Google Scholar 

  23. Kim, G. & Menon, R. An ultra-small three dimensional computational microscope. Appl. Phys. Lett. 105, 061114 (2014).

    Article  ADS  Google Scholar 

  24. Oskooi, A. F. et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010).

    Article  ADS  Google Scholar 

  25. Liu, L., Ding, Y., Yvind, K. & Hvam, J. M. Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Opt. Lett. 36, 1059–1061 (2011).

    Article  ADS  Google Scholar 

  26. Bogaerts, W. et al. Basic structures for photonic integrated circuits in silicon-on-insulator. Opt. Express 12, 1583–1591 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Dominguez-Caballero for assistance with the DBS algorithm and B. Baker for sample preparation. This work made use of the University of Utah shared facilities of the Micron Technology Foundation Inc. Microscopy Suite sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Research and the Utah Science Technology and Research (USTAR) initiative of the State of Utah. This work made use of University of Utah USTAR shared facilities, supported in part by the MRSEC Program of the National Science Foundation (NSF, award no. DMR-1121252). The work is supported by the National Aeronautics and Space Administration (NASA, NNX14AB13G), the US Department of Energy (DOE, EE0005959) and the University of Utah.

Author information

Authors and Affiliations

Authors

Contributions

B.S., P.W. and R.M. conceived and designed the experiments. B.S., P.W. and R.P. contributed materials/analysis tools. B.S. performed the experiments. B.S., R.P. and R.M. analysed the data. B.S., R.P. and R.M. wrote the paper.

Corresponding author

Correspondence to Rajesh Menon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2047 kb)

Supplementary movie 1

Supplementary information (MOV 3480 kb)

Supplementary movie 2

Supplementary information (MOV 1345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, B., Wang, P., Polson, R. et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nature Photon 9, 378–382 (2015). https://doi.org/10.1038/nphoton.2015.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing