Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-rate measurement-device-independent quantum cryptography

Abstract

Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic protocol and its general eavesdropping.
Figure 2: Protocol in the presence of a coherent two-mode Gaussian attack.
Figure 3: Behaviour of the ideal rate in terms of the transmissivities of Alice's and Bob's links.
Figure 4: Free-space experimental set-up.
Figure 5: Experimental results and comparison with theoretical predictions.

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–196 (2002).

    Article  ADS  Google Scholar 

  2. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    Article  ADS  Google Scholar 

  3. Wilde, M. M. Quantum Information Theory (Cambridge Univ. Press, 2013).

    Book  Google Scholar 

  4. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article  ADS  Google Scholar 

  5. SECOQC (2007); http://www.secoqc.net

  6. Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

    Article  ADS  Google Scholar 

  7. Tokyo QKD network (2010); http://www.uqcc.org/QKDnetwork

  8. Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011).

    Article  ADS  Google Scholar 

  9. Lydersen, L. et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photon. 4, 686–689 (2010).

    Article  ADS  Google Scholar 

  10. Gerhardt, I. et al. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Commun. 2, 349 (2011).

    Article  ADS  Google Scholar 

  11. Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    Article  ADS  Google Scholar 

  12. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  13. Ma, X. & Razavi, M. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012).

    Article  ADS  Google Scholar 

  14. Wang, X. B. Three-intensity decoy state method for device independent quantum key distribution with basis dependent errors. Phys. Rev. A 87, 012320 (2013).

    Article  ADS  Google Scholar 

  15. Branciard, C., Rosset, D., Liang, Y.-C. & Gisin, N. Measurement-device-independent entanglement witnesses for all entangled quantum states. Phys. Rev. Lett. 110, 060405 (2013).

    Article  ADS  Google Scholar 

  16. Tomamichel, M., Fehr, S., Kaniewski, J. & Wehner, S. A monogamy-of-entanglement game with applications to device-independent quantum cryptography. New J. Phys. 15, 103002 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. Lim, C. C. W., Portmann, C., Tomamichel, M., Renner, R. & Gisin, N. Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3, 031006 (2013).

    Google Scholar 

  18. Abruzzo, S., Kampermann, H. & Bruß, D. Measurement-device-independent quantum key distribution with quantum memories. Phys. Rev. A 89, 012301 (2014).

    Article  ADS  Google Scholar 

  19. Rubenok, A., Slater, J. A., Chan, P., Lucio-Martinez, I. & Tittel, W. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013).

    Article  ADS  Google Scholar 

  20. Ferreira da Silva, T. et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013).

    Article  ADS  Google Scholar 

  21. Tang, Y.-L. et al. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2013).

    Article  Google Scholar 

  22. Cerf, N. J., Levy, M. & van Assche, G. Quantum distribution of Gaussian keys with squeezed states. Phys. Rev. A 63, 052311 (2001).

    Article  ADS  Google Scholar 

  23. Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003).

    Article  ADS  Google Scholar 

  24. Lodewyck, J. et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007).

    Article  ADS  Google Scholar 

  25. Weedbrook, C. et al. Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004).

    Article  ADS  Google Scholar 

  26. Pirandola, S., Mancini, S., Lloyd, S. & Braunstein, S. L. Continuous-variable quantum cryptography with two-way quantum communication. Nature Phys. 4, 726–730 (2008).

    Article  ADS  Google Scholar 

  27. Weedbrook, C., Pirandola, S., Lloyd, S. & Ralph, T. C. Quantum cryptography approaching the classical limit. Phys. Rev. Lett. 105, 110501 (2010).

    Article  ADS  Google Scholar 

  28. Madsen, L. S., Usenko, V. C., Lassen, M., Filip, R. & Andersen, U. L. Continuous variable quantum key distribution with two-mode squeezed states. Nature Commun. 3, 1083 (2012).

    Article  ADS  Google Scholar 

  29. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photon. 7, 378–381 (2013).

    Article  ADS  Google Scholar 

  30. Saltzer, J. H., Reed, D. P. & Clark, D. D. End-to-end arguments in system design. ACM Trans. Comput. Syst. 2, 277–288 (1984).

    Article  Google Scholar 

  31. Baran, P. On distributed communications networks. IEEE Trans. Commun. Syst. 12, 1–9 (1964).

    Article  Google Scholar 

  32. Chi, Y.-M. et al. A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution. New. J. Phys. 13, 013003 (2011).

    Article  ADS  Google Scholar 

  33. Spedalieri, G., Ottaviani, C. & Pirandola, S. Covariance matrices under Bell-like detections. Open Syst. Inf. Dyn. 20, 1350011 (2013).

    Article  MathSciNet  Google Scholar 

  34. Renner, R. Symmetry of large physical systems implies independence of subsystems. Nature Phys. 3, 645–649 (2007).

    Article  ADS  Google Scholar 

  35. Renner, R. & Cirac, J. I. de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009).

    Article  ADS  Google Scholar 

  36. García-Patrón, R. & Cerf, N. J. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006).

    Article  ADS  Google Scholar 

  37. Jouguet, P., Kunz-Jacques, S. & Leverrier, A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84, 062317 (2011).

    Article  ADS  Google Scholar 

  38. Curty, M. et al. Finite-key analysis for measurement-device-independent quantum key distribution. Nature Commun. 5, 3732 (2014).

    Article  ADS  Google Scholar 

  39. Leverrier, A. Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501 (2015).

    Article  ADS  Google Scholar 

  40. Pirandola, S., Braunstein, S. L. & Lloyd, S. Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008).

    Article  ADS  Google Scholar 

  41. Pirandola, S., Serafini, A. & Lloyd, S. Correlation matrices of two-mode bosonic systems. Phys. Rev. A 79, 052327 (2009).

    Article  ADS  Google Scholar 

  42. Pirandola, S. Entanglement reactivation in separable environments. New J. Phys. 15, 113046 (2013).

    Article  ADS  Google Scholar 

  43. Pirandola, S. Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014).

    Article  ADS  Google Scholar 

  44. Pirandola, S., García-Patrón, R., Braunstein, S. L. & Lloyd, S. Direct and reverse secret-key capacities of a quantum channel. Phys. Rev. Lett. 102, 050503 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  45. Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nature Commun. 5, 5235 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.P. acknowledges support from the Engineering and Physical Sciences Research Council via the ‘UK Quantum Communications HUB’ (EP/M013472/1) and grants ‘qDATA’ (EP/L011298/1) and ‘HIPERCOM’ (EP/J00796X/1). S.P. also acknowledges the Leverhulme Trust (research fellowship ‘qBIO’). T.G. acknowledges support from the H.C. Ørsted postdoctoral programme. U.L.A. acknowledges the Danish Agency for Science, Technology and Innovation (Sapere Aude project).

Author information

Authors and Affiliations

Authors

Contributions

S.P. conceived the theoretical ideas, developed the methodology, derived the main analytical results, and wrote the manuscript and the Supplementary Information. C.O. contributed to the security analysis of the protocol and performed the post-processing of the experimental data. G.S. contributed to theoretical aspects and performed the post-processing of the experimental data. C.S.J., T.G. and U.L.A. designed and performed the experiment, analysed the experimental data, and contributed to writing the description of the experimental set-up. C.W., S.L. and S.L.B. contributed to theoretical aspects and editing of the manuscript.

Corresponding author

Correspondence to Stefano Pirandola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirandola, S., Ottaviani, C., Spedalieri, G. et al. High-rate measurement-device-independent quantum cryptography. Nature Photon 9, 397–402 (2015). https://doi.org/10.1038/nphoton.2015.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing