Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths

Abstract

Propagating light beams with widths down to and below the optical wavelength require bulky large-aperture lenses and remain focused only for micrometric distances1,2. Here, we report the observation of light beams that violate this localization/depth-of-focus law by shrinking as they propagate, allowing resolution to be maintained and increased over macroscopic propagation lengths. In nanodisordered ferroelectrics3,4 we observe a non-paraxial propagation of a sub-micrometre-sized beam for over 1,000 diffraction lengths, the narrowest visible beam reported to date5,6,7,8. This unprecedented effect is caused by the nonlinear response of a dipolar glass, which transforms the leading optical wave equation into a Klein–Gordon-type equation that describes a massive particle field9. Our findings open the way to high-resolution optics over large depths of focus, and a route to merging bulk optics into nanodevices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light beams that anti-diffract.
Figure 2: Accessing the anti-diffraction regime.
Figure 3: Micrometre-sized light beams propagating for 134 Rayleigh lengths.
Figure 4: Reaching below the limits of diffractive optics.

Similar content being viewed by others

References

  1. Hell, S. W., Schmidt, R. & Enger, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photon. 3, 381–387 (2009).

    Article  ADS  Google Scholar 

  2. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nature Photon. 3, 388–394 (2009).

    Article  ADS  Google Scholar 

  3. Bokov, A. A. & Ye, Z.-G. Dielectric relaxation in relaxor ferroelectrics. J. Adv. Dielectrics 2, 1241010 (2012).

    Article  Google Scholar 

  4. Shvartsman, V. V. & Lupascu, D. C. Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012).

    Article  Google Scholar 

  5. Trillo, S. & Torruellas, W. Spatial Solitons (Springer-Verlag, 2001).

    Book  Google Scholar 

  6. Boardman, A. D. & Sukhorukov, A. P. Soliton Driven Photonics (Kluwer Academic, 2001).

    Book  Google Scholar 

  7. Kivshar, Y. S. & Agrawal, G. P. Optical Solitons (Academic Press, 2003).

    Google Scholar 

  8. Chen, Z., Segev, M. & Christodoulides, D. N. Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012).

    Article  ADS  Google Scholar 

  9. Mandl, F. Quantum Field theory (Wiley, 1984).

    MATH  Google Scholar 

  10. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  11. Conti, C., Agranat, A. J. & DelRe, E. Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin. Phys. Rev. A 84, 043809 (2011).

    Article  ADS  Google Scholar 

  12. Yariv, A. Quantum Electronics (Wiley, 1988).

    Google Scholar 

  13. Verdeyen, J. T. Laser Electronics (Prentice Hall, 1981).

    Google Scholar 

  14. Kovacs, A. J. Glass transition in amorphous polymers a phenomenological study. Adv. Polym. Sci. 3, 394–508 (1963).

    Google Scholar 

  15. DelRe, E., Spinozzi, E., Agranat, A. J. & Conti, C. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics. Nature Photon. 5, 39–42 (2011).

    Article  ADS  Google Scholar 

  16. Mossa, S. & Sciortino, F. Crossover (or Kovacs) effect in an aging molecular liquid. Phys. Rev. Lett. 92, 045504 (2004).

    Article  ADS  Google Scholar 

  17. Leuzzi, L. & Nieuwenhuizen, T. M. Thermodynamics of the Glassy State (Taylor & Francis, 2008).

    MATH  Google Scholar 

  18. Park, J. H. et al. Subwavelength light focusing using random nanoparticles. Nature Photon. 7, 454–458 (2013).

    Article  ADS  Google Scholar 

  19. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  20. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  21. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  22. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  23. Powell, D. A., Shadrivov, I. V. & Kivshar, Y. S. Nonlinear electric metamaterials. Appl. Phys. Lett. 95, 084102 (2009).

    Article  ADS  Google Scholar 

  24. Kosaka, H. et al. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74, 1212–1214 (1999).

    Article  ADS  Google Scholar 

  25. Eisenberg, H. S., Silberberg, Y., Morandotti, R. & Aitchison, J. S. Diffraction management. Phys. Rev. Lett. 85, 1863–1866 (2000).

    Article  ADS  Google Scholar 

  26. Firstenberg, O., London, P., Shuker, A., Ron, A. & Davidson, N. Elimination, reversal and directional bias of optical diffraction. Nature Phys. 5, 665–668 (2009).

    Article  ADS  Google Scholar 

  27. Crosignani, B., Degasperis, A., DelRe, E., Di Porto, P. & Agranat, A. J. Nonlinear optical diffraction effects and solitons due to anisotropic charge-diffusion-based self-interaction. Phys. Rev. Lett. 82, 1664–1667 (1999).

    Article  ADS  Google Scholar 

  28. DelRe, E. & Conti, C. in Nonlinear Photonics and Novel Optical Phenomena Vol. 170 (eds Chen, Z. & Morandotti, R.) Ch. 8 (Springer-Verlag, 2012).

    Google Scholar 

  29. Parravicini, J., Conti, C., Agranat, A. J. & DelRe, E. Programming scale-free optics in disordered ferroelectrics. Opt. Lett. 37, 2355–2357 (2012).

    Article  ADS  Google Scholar 

  30. Parravicini, J., Conti, C., Agranat, A. J. & DelRe, E. Rejuvenation in scale-free optics and enhanced diffraction cancellation life-time. Opt. Express 20, 27382–27387 (2012).

    Article  ADS  Google Scholar 

  31. Agranat, A., Hofmeister, R. & Yariv, A. Characterization of a new photorefractive material: K1−yLyT1−xNx . Opt. Lett. 17, 713–715 (1992).

    Article  ADS  Google Scholar 

  32. Ben Ishai, P., Agranat, A. J. & Feldman, Y. Confinement kinetics in a KTN:Cu crystal: experiment and theory. Phys. Rev. B 73, 104104 (2006).

    Article  ADS  Google Scholar 

  33. Alberici-Kious, F., Bouchaud, J. P., Cugliandolo, L. F., Doussineau, P. & Levelut, A. Aging in K1−xLixTaO3: a domain growth interpretation. Phys. Rev. Lett. 81, 4987–4990 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results was supported by funding from the Italian Ministry of Research (MIUR) through the ‘Futuro in Ricerca’ FIRB grant PHOCOS-RBFR08E7VA and from the European Research Council under the European Community Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 201766. Partial funding was received through the SMARTCONFOCAL project of the Regione Lazio and through the PRIN 2012BFNWZ2 and Sapienza 2013PHOTOANDERSON projects. A.J.A. acknowledges support from the Peter Brojde Center for Innovative Engineering.

Author information

Authors and Affiliations

Authors

Contributions

E.D. and C.C. conceived and developed the experiments and theory. R.A. designed and fabricated the KTN:Li samples and participated in the analysis and interpretation of results. F.D. and J.P. carried out the experiments and data analysis. G.P. carried out the dielectric characterization of the material.

Corresponding author

Correspondence to Eugenio DelRe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DelRe, E., Di Mei, F., Parravicini, J. et al. Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths. Nature Photon 9, 228–232 (2015). https://doi.org/10.1038/nphoton.2015.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing