Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrabright X-ray laser scattering for dynamic warm dense matter physics

Matters Arising to this article was published on 25 October 2019

Abstract

In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ångström) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. In addition, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peak brightness.
Figure 2: WDM experiment.
Figure 3: Plasmon spectra.
Figure 4: Wavenumber-resolved scattering data W(k).
Figure 5: Pressure–density diagram.

Similar content being viewed by others

References

  1. Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981).

    Article  ADS  Google Scholar 

  2. Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).

    Article  ADS  Google Scholar 

  3. Coppari, F. et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geosci. 6, 926–929 (2013).

    Article  ADS  Google Scholar 

  4. Ernstorfer, R. et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009).

    Article  ADS  Google Scholar 

  5. Glenzer, S. H. et al. Symmetric inertial confinement fusion implosions at ultra-high laser energies. Science 327, 1228–1231 (2010).

    Article  ADS  Google Scholar 

  6. Young, D. A., Wolford, J. K., Rogers, F. J. & Holian, K. S. Theory of the aluminum shock equation of state to 104 Mbar. Phys. Lett. 108, 157–160 (1985).

    Article  Google Scholar 

  7. Ma, T. et al. X-ray scattering measurements of strong ion–ion correlations in shock-compressed aluminum. Phys. Rev. Lett. 110, 065001 (2013).

    Article  ADS  Google Scholar 

  8. Ravasio, A. et al. Direct observation of strong ion coupling in laser-driven shock-compressed targets. Phys. Rev. Lett. 99, 135006 (2007).

    Article  ADS  Google Scholar 

  9. Ciricosta, O. et al. Direct measurements of the ionization potential depression in a dense plasma. Phys. Rev. Lett. 109, 065002 (2012).

    Article  ADS  Google Scholar 

  10. Nagler, B. et al. Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Phys. 5, 693–696 (2009).

    Article  ADS  Google Scholar 

  11. Focher, P., Chiarotti, G. L., Bernasconi, M., Tosatti, E. & Parrinello, M. Structural phase transformations via first-principles simulation. Europhys. Lett. 26, 345–351 (1994).

    Article  ADS  Google Scholar 

  12. Driver, K. P. & Militzer, B. All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. Phys. Rev. Lett. 108, 115502 (2012).

    Article  ADS  Google Scholar 

  13. Garcia Saiz, E. et al. Probing warm dense lithium by inelastic X-ray scattering. Nature Phys. 4, 940–944 (2008).

    Article  ADS  Google Scholar 

  14. Louis, A. A. & Ashcroft, N. W. Extending linear response: inferences from electron–ion structure factors. Phys. Rev. Lett. 81, 4456–4459 (1998).

    Article  ADS  Google Scholar 

  15. Benuzzi-Mounaix, A. et al. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy. Phys. Rev. Lett. 107, 165006 (2011).

    Article  ADS  Google Scholar 

  16. Lévy, A. et al. X-ray diagnosis of the pressure induced Mott nonmetal–metal transition. Phys. Rev. Lett. 108, 055002 (2012).

    Article  ADS  Google Scholar 

  17. Emma, P. et al. First lasing and operation of an ångström-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  18. Milathianaki, D. et al. Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342, 220–223 (2013).

    Article  ADS  Google Scholar 

  19. Amann, J. et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nature Photon. 6, 693–698 (2012).

    Article  ADS  Google Scholar 

  20. Boehler, R. Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature 363, 534–536 (1993).

    Article  ADS  Google Scholar 

  21. Purvis, M. A. et al. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nature Photon. 7, 796–800 (2013).

    Article  ADS  Google Scholar 

  22. Kritcher, A. L. et al. Ultrafast X-ray Thomson scattering of shock-compressed matter. Science 322, 69–71 (2008).

    Article  ADS  Google Scholar 

  23. Souza, A. N., Perkins, D. J., Starrett, C. E., Saumon, D. & Hansen, S. B. Predictions of X-ray scattering spectra for warm dense matter. Phys. Rev. E 89, 023108 (2014).

    Article  ADS  Google Scholar 

  24. Rüter, H. R. & Redmer, R. Ab initio simulations for the ion–ion structure factor of warm dense aluminum. Phys. Rev. Lett. 112, 145007 (2014).

    Article  ADS  Google Scholar 

  25. Dixit, S. N., Lawson, J. K., Manes, K. R., Powell, H. T. & Nugent, K. A. Kinoform phase plates for focal plane irradiance profile control. Opt. Lett. 19, 417–419 (1994).

    Article  ADS  Google Scholar 

  26. MacFarlane, J. J., Golovkin, I. E. & Woodruff, P. R. HELIOS-CR A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transfer 99, 381–397 (2006).

    Article  ADS  Google Scholar 

  27. Fletcher, L. B. et al. Plasmon measurements with a seeded X-ray laser. J. Instrum. 8, C11014 (2013).

    Article  Google Scholar 

  28. Gregori, G., Glenzer, S. H. & Landen, O. L. Generalized X-ray scattering cross section from non-equilibrium solids and plasmas. Phys. Rev. E 74, 026402 (2006).

    Article  ADS  Google Scholar 

  29. Gericke, D. O., Vorberger, J., Gregori, G. & Wünsch, K. Screening of ionic cores in partially ionized plasmas within linear response. Phys. Rev. E 81, 065401(R) (2010).

    Article  ADS  Google Scholar 

  30. Wünsch, K., Vorberger, J. & Gericke, D. O. Ion structure in warm dense matter: benchmarking hypernetted-chain equations by first-principle simulations. Phys. Rev. E 79, 010201(R) (2009).

    Article  ADS  Google Scholar 

  31. Chihara, J. Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons. J. Phys. F 17, 295–304 (1987).

    Article  ADS  Google Scholar 

  32. Gregori, G., Glenzer, S. H., Rozmus, W., Lee, R. W. & Landen, O. L. Theoretical model of X-ray scattering as a dense matter probe. Phys. Rev. E. 67, 026412 (2003).

    Article  ADS  Google Scholar 

  33. Salpeter, E. E. Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669–682 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  34. Mazevet, S. & Zerah, G. Ab initio simulations of the K-edge shift along the aluminum hugoniot. Phys. Rev. Lett. 101, 155001 (2008).

    Article  ADS  Google Scholar 

  35. Vorberger, J., Donko, Z., Tkachenko, I. M. & Gericke, D. O. Dynamic ion structure factor of warm dense matter. Phys. Rev. Lett. 109, 065002 (2012).

    Article  Google Scholar 

  36. Ross, M., Yang Linb, H. & Boehler, R. Melting of aluminum, molybdenum, and the light actinides. Phys. Rev. B 70, 184112 (2004).

    Article  ADS  Google Scholar 

  37. Davis, J.-P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys. 99, 103512 (2006).

    Article  ADS  Google Scholar 

  38. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–581 (1993).

    Article  ADS  Google Scholar 

  39. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).

    Article  ADS  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17978 (1994).

    Article  ADS  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  46. Nose, S. J. A unified formulation of the constant temperature molecular-dynamics methods. Chem. Phys. 81, 511–519 (1984).

    ADS  Google Scholar 

  47. Nose, S. Constant temperature molecular dynamics methods. Prog. Theor. Phys. 103(suppl.), 1–46 (1991).

    Article  MathSciNet  Google Scholar 

  48. Monkhorst, H. J. & Pack, J. D. On special points for Brillouin zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was performed at the Matter at Extreme Conditions (MEC) instrument of the LCLS, supported by the DOE Office of Science, Fusion Energy Science (contract no. SF00515). This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182) and partially supported by the DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division (contract no. DE-AC02-76SF00515). Part of this work was performed with the assistance of the US Department of Energy by Lawrence Livermore National Laboratory (contract no. DE-AC52-07NA27344). This work was also supported by a Laboratory Directed Research and Development grant (11-ERD-050) and the Peter–Paul–Ewald Fellowship of the VolkswagenStiftung.

Author information

Authors and Affiliations

Authors

Contributions

L.B.F. and S.H.G. co-wrote the manuscript. L.B.F., H.J.L., T.D., E.G., B.N., P.H., S.L.P., T.M., A.P., D.T., T.W., M.W., B.B., U.Z., J.B.H. and S.H.G. performed the experiment. U.Z., T.D. and H.J.L. developed and commissioned the spectrometer. L.B.F. and A.P. analysed the spectra. C.F., M.M., D.A.C., D.O.G., J.V. and G.G. performed calculations and simulations. L.B.F., T.D., M.M., D.A.C., D.O.G., J.V., G.G., R.W.F., C.-C.K., H.N., J.W., P.N., J.B.H. and S.H.G. conceived the experiment and interpreted the results.

Corresponding authors

Correspondence to L. B. Fletcher or S. H. Glenzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, L., Lee, H., Döppner, T. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nature Photon 9, 274–279 (2015). https://doi.org/10.1038/nphoton.2015.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing