Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cryogenic optical lattice clocks

Abstract

The accuracy of atomic clocks relies on the superb reproducibility of atomic spectroscopy, which is accomplished by careful control and the elimination of environmental perturbations on atoms. To date, individual atomic clocks have achieved a 10−18 level of total uncertainties1,2, but a two-clock comparison at the 10−18 level has yet to be demonstrated. Here, we demonstrate optical lattice clocks with 87Sr atoms interrogated in a cryogenic environment to address the blackbody radiation-induced frequency shift3, which remains the primary source of systematic uncertainty2,4,5,6 and has initiated vigorous theoretical7,8 and experimental9,10 investigations. The systematic uncertainty for the cryogenic clock is evaluated to be 7.2 × 10−18, which is expedited by operating two such cryo-clocks synchronously11,12. After 11 measurements performed over a month, statistical agreement between the two cryo-clocks reached 2.0 × 10−18. Such clocks' reproducibility is a major step towards developing accurate clocks at the low 10−18 level, and is directly applicable as a means for relativistic geodesy13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up of the cryogenic optical lattice clocks.
Figure 2: Temperature-dependent BBR shift.
Figure 3: Frequency comparison between two cryo-clocks.

Similar content being viewed by others

References

  1. Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    Article  ADS  Google Scholar 

  2. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    Article  ADS  Google Scholar 

  3. Itano, W. M., Lewis, L. L. & Wineland, D. J. Shift of 2S1/2 hyperfine splittings due to blackbody radiation. Phys. Rev. A 25, 1233–1235 (1982).

    Article  ADS  Google Scholar 

  4. Katori, H., Takamoto, M., Pal'chikov, V. G. & Ovsiannikov, V. D. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003).

    Article  ADS  Google Scholar 

  5. Le Targat, R. et al. Experimental realization of an optical second with strontium lattice clocks. Nature Commun. 4, 2109 (2013).

    Article  ADS  Google Scholar 

  6. Hinkley, N. et al. An atomic clock with 10−18 instability. Science 341, 1215–1218 (2013).

    Article  ADS  Google Scholar 

  7. Porsev, S. G. & Derevianko, A. Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks. Phys. Rev. A 74, 020502 (2006).

    Article  ADS  Google Scholar 

  8. Safronova, M. S., Porsev, S. G., Safronova, U. I., Kozlov, M. G. & Clark, C. W. Blackbody-radiation shift in the Sr optical atomic clock. Phys. Rev. A 87, 012509 (2013).

    Article  ADS  Google Scholar 

  9. Middelmann, T., Falke, S., Lisdat, C. & Sterr, U. High accuracy correction of blackbody radiation shift in an optical lattice clock. Phys. Rev. Lett. 109, 263004 (2012).

    Article  ADS  Google Scholar 

  10. Sherman, J. A. et al. High-accuracy measurement of atomic polarizability in an optical lattice clock. Phys. Rev. Lett. 108, 153002 (2012).

    Article  ADS  Google Scholar 

  11. Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nature Photon. 5, 288–292 (2011).

    Article  ADS  Google Scholar 

  12. Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    Article  ADS  Google Scholar 

  13. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  14. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  15. Dehmelt, H. G. Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. IM-31, 83–87 (1982).

    Article  ADS  Google Scholar 

  16. Huntemann, N. et al. High-accuracy optical clock based on the octupole transition in 171Yb+. Phys. Rev. Lett. 108, 090801 (2012).

    Article  ADS  Google Scholar 

  17. Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  ADS  Google Scholar 

  18. Katori, H. Optical lattice clocks and quantum metrology. Nature Photon. 5, 203–210 (2011).

    Article  ADS  Google Scholar 

  19. Falke, S. et al. A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency. New J. Phys. 16, 073023 (2014).

    Article  ADS  Google Scholar 

  20. Westergaard, P. G. et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 10−17 level. Phys. Rev. Lett. 106, 210801 (2011).

    Article  ADS  Google Scholar 

  21. Katori, H., Hashiguchi, K., Il'inova, E. Y. & Ovsiannikov, V. D. Magic wavelength to make optical lattice clocks insensitive to atomic motion. Phys. Rev. Lett. 103, 153004 (2009).

    Article  ADS  Google Scholar 

  22. Lodewyck, J., Zawada, M., Lorini, L., Gurov, M. & Lemonde, P. Observation and cancellation of a perturbing DC stark shift in strontium optical lattice clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 411–415 (2012).

    Article  Google Scholar 

  23. Hachisu, H. et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100, 053001 (2008).

    Article  ADS  Google Scholar 

  24. McFerran, J. et al. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7 × 10−15. Phys. Rev. Lett. 108, 183004 (2012).

    Article  ADS  Google Scholar 

  25. Derevianko, A., Dzuba, V. A. & Flambaum, V. V. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy. Phys. Rev. Lett. 109, 180801 (2012).

    Article  ADS  Google Scholar 

  26. Mukaiyama, T., Katori, H., Ido, T., Li, Y. & Kuwata-Gonokami, M. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. Phys. Rev. Lett. 90, 113002 (2003).

    Article  ADS  Google Scholar 

  27. Takamoto, M. & Katori, H. Coherence of spin-polarized fermions interacting with a clock laser in a Stark-shift-free optical lattice. J. Phys. Soc. Jpn 78, 013301 (2009).

    Article  ADS  Google Scholar 

  28. Takamoto, M. et al. Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope. J. Phys. Soc. Jpn 75, 104302 (2006).

    Article  ADS  Google Scholar 

  29. Akatsuka, T. et al. 30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks. Jpn J. Appl. Phys. 53, 032801 (2014).

    Article  ADS  Google Scholar 

  30. Yamaguchi, A. et al. Direct comparison of distant optical lattice clocks at the 10−16 uncertainty. Appl. Phys. Exp. 4, 082203 (2011).

    Article  ADS  Google Scholar 

  31. Middelmann, T. et al. Tackling the blackbody shift in a strontium optical lattice clock. IEEE Trans. Instrum. Meas. 60, 2550–2557 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work received partial support from the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) and from the Photon Frontier Network Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors thank H. Kubo for his contribution in the initial stage of the experiments, and N. Nemitz, T. Takano, A. Yamaguchi and N. Ohmae for useful comments and conversations.

Author information

Authors and Affiliations

Authors

Contributions

H.K. envisaged and initiated experiments. H.K., M.T., M.D., T.O. and I.U. designed the apparatus and experiments. I.U. and M.T. carried out experiments and analysed data. I.U., M.T., M.D. and H.K. discussed the results and contributed to writing the draft manuscript.

Corresponding author

Correspondence to Hidetoshi Katori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushijima, I., Takamoto, M., Das, M. et al. Cryogenic optical lattice clocks. Nature Photon 9, 185–189 (2015). https://doi.org/10.1038/nphoton.2015.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing