Undoing the effect of loss on quantum entanglement

Journal name:
Nature Photonics
Volume:
9,
Pages:
764–768
Year published:
DOI:
doi:10.1038/nphoton.2015.195
Received
Accepted
Published online

Abstract

Entanglement distillation, the purpose of which is to probabilistically increase the strength and purity of quantum entanglement, is a primary element of many quantum communication and computation protocols. It is particularly necessary in quantum repeaters in order to counter the degradation of entanglement that inevitably occurs due to losses in communication lines. Here, we distil the Einstein–Podolsky–Rosen state of light, the workhorse of continuous-variable entanglement, using noiseless amplification. The advantage of our technique is that it permits recovering a macroscopic level of entanglement, however low the initial entanglement or however high the loss may be. Experimentally, we recover the original entanglement level after one of the Einstein–Podolsky–Rosen modes has experienced a loss factor of 20. The level of entanglement in our distilled state is higher than that achievable by direct transmission of any state through a similar loss channel. This is a key step towards realizing practical continuous-variable quantum communication protocols.

At a glance

Figures

  1. Experimental set-up.
    Figure 1: Experimental set-up.

    Inset: Conceptual scheme. The NLA distillation event corresponds to the click in the single-photon detector placed in the beamsplitter output.

  2. Experimental results.
    Figure 2: Experimental results.

    a, A total of 10,000 samples of raw position quadrature data for the original two-mode squeezed state (top) and the distilled state after applying the two methods of degrading the entanglement (reducing the initial squeezing, middle; asymmetric loss, bottom). The NLA gain is 6.5 for the middle plot and 10 for the bottom. The degree of correlation is similar in all three cases. The quadratures exhibit non-classical correlations at a level below the shot noise (dashed circle). b,c, Analysis of the distilled states as a function of NLA gain. Left columns: the case of reduced initial squeezing. Right column: the case of asymmetric loss. In b, two-mode squeezing is displayed, measured by the variances of the sum (anti-squeezing) and difference (squeezing) of the position quadratures in the two channels of the distilled EPR state. In c, the logarithmic negativity is shown. The vertical axes in b are scaled in units of standard quantum limit. The theoretical curves for the case of low initial squeezing are calculated assuming the initial squeezing parameter of γ = 0.05, detection efficiencies in the undistilled and distilled channels of ηA = 0.5 and ηB = 0.5, respectively, and a single-photon preparation efficiency of η = 0.65 (refs 15,28,29). For the case of a loss channel, γ = 0.135 and ηA = 0.45; other parameters are the same. The efficiency parameters are defined in Supplementary Fig. 2.

References

  1. Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  2. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722725 (1996).
  3. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513577 (2005).
  4. Reid, M. D. Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913923 (1989).
  5. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621669 (2012).
  6. Ralph, T. C. & Lund, A. P. Nondeterministic noiseless linear amplifcation of quantum systems. AIP Conf. Proc. 1110, 155160 (2009).
  7. Takahashi, H. et al. Entanglement distillation from Gaussian input states. Nature Photon. 4, 178181 (2010).
  8. Kurochkin, Y., Prasad, A. S. & Lvovsky, A. I. Distillation of the two-mode squeezed state. Phys. Rev. Lett. 112, 070402 (2014).
  9. Bartley, T. J. & Walmsley, I. A. Directly comparing entanglement-enhancing non-Gaussian operations. New J. Phys. 17, 023038 (2015).
  10. Chrzanowski, H. M. et al. Measurement-based noiseless linear amplification for quantum communication. Nature Photon. 8, 333338 (2014).
  11. Andersen, U. L., Neergaard-Nielsen, J. S., van Loock, P. & Furusawa, A. Hybrid discrete- and continuous-variable quantum information. Nature Phys. 11, 713719 (2015).
  12. Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N. & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photon. 4, 316319 (2010).
  13. Ferreyrol, F. et al. Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010).
  14. Zavatta, A., Fiurasek, J. & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photon. 5, 5260 (2010).
  15. Kosis, S., Xiang, G. Y., Ralph, T. C. & Pryde, G. J. Heralded noiseless amplification of a photon polarization qubit. Nature Phys. 9, 2328 (2013).
  16. Pegg, D., Phillips, L. & Barnett, S. Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 16041606 (1998).
  17. Babichev, S. A., Ries, J. & Lvovsky, A. I. Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 17 (2003).
  18. Lvovsky, A. I. & Mlynek, J. Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88, 250401 (2002).
  19. Mičuda, M. et al. Noiseless loss suppression in quantum optical communication. Phys. Rev. Lett. 109, 180503 (2012).
  20. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R. & Grangier, P. Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007).
  21. Kumar, R. et al. Versatile wideband balanced detector for quantum optical homodyne tomography. Opt. Commun. 285, 52595267 (2012).
  22. Huisman, S. R. et al. Instant single-photon Fock state tomography. Opt. Lett. 34, 27392741 (2009).
  23. Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
  24. Pan, J. W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417422 (2003).
  25. Ralph, T. C. Quantum error correction of continuous-variable states against Gaussian noise. Phys. Rev. A 84, 022339 (2011).
  26. Eisert, J., Browne, D. E., Scheel, S. & Plenio, M. B., Distillation of continuous-variable entanglement with optical means. Ann. Phys. (Leipz.) 311, 431458 (2004).
  27. Datta, A. et al. Compact continuous-variable entanglement distillation. Phys. Rev. Lett. 108, 060502 (2012).
  28. Berry, D. W. & Lvovsky, A. I. Linear-optical processing cannot increase photon efficiency. Phys. Rev. Lett. 105, 203601 (2010).
  29. Berry, D. W. & Lvovsky, A. I. Preservation of loss in linear-optical processing. Phys. Rev. A 84, 042304 (2011).

Download references

Author information

  1. These authors contributed equally to this work

    • Alexander E. Ulanov &
    • Ilya A. Fedorov

Affiliations

  1. Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow 143025, Russia

    • Alexander E. Ulanov,
    • Ilya A. Fedorov,
    • Anastasia A. Pushkina,
    • Yury V. Kurochkin &
    • A. I. Lvovsky
  2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, Chengdu, Sichuan 610054, China

    • Alexander E. Ulanov &
    • A. I. Lvovsky
  3. Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700, Russia

    • Alexander E. Ulanov &
    • Anastasia A. Pushkina
  4. P.N. Lebedev Physics Institute, Leninskiy Prospect 53, Moscow 119991, Russia

    • Ilya A. Fedorov,
    • Anastasia A. Pushkina &
    • A. I. Lvovsky
  5. Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia

    • Timothy C. Ralph
  6. Institute for Quantum Science and Technology, University of Calgary, Calgary Alberta T2N 1N4, Canada

    • A. I. Lvovsky
  7. Quantum Information Science Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

    • A. I. Lvovsky

Contributions

The experiment was conceived and designed by A.E.U., I.F., Y.K., T.C.R. and A.L., and performed by A.E.U., I.F., Y.K., A.A.P. and A.L. The data were analysed by A.E.U., I.F. and A.L. A.E.U., I.F., Y.K., T.C.R. and A.L. contributed to writing the paper.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary information (412 KB)

    Supplementary information

Additional data