Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong light–matter coupling in two-dimensional atomic crystals

Abstract

Two-dimensional atomic crystals of graphene, as well as transition-metal dichalcogenides, have emerged as a class of materials that demonstrate strong interaction with light. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction rate is engineered to be faster than dissipation from the light and matter entities, one reaches the ‘strong coupling’ regime. This results in the formation of half-light, half-matter bosonic quasiparticles called microcavity polaritons. Here, we report evidence of strong light–matter coupling and the formation of microcavity polaritons in a two-dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 ± 3 meV is observed in angle-resolved reflectivity and photoluminescence spectra due to coupling between the two-dimensional excitons and the cavity photons. Realizing strong coupling at room temperature in two-dimensional materials that offer a disorder-free potential landscape provides an attractive route for the development of practical polaritonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and optical properties of the CVD-grown MoS2 microcavity.
Figure 2: Angle-resolved reflectivity spectra of the microcavity.
Figure 3: Dispersion of microcavity polaritons.
Figure 4: Angle-resolved photoluminescence spectra of the microcavity.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  2. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  ADS  Google Scholar 

  3. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  4. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  5. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  6. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    Article  ADS  Google Scholar 

  7. Zhu, W. et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature Commun. 5, 3087 (2014).

    Article  ADS  Google Scholar 

  8. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  9. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  10. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  ADS  Google Scholar 

  11. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  12. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    Article  ADS  Google Scholar 

  13. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    Article  ADS  Google Scholar 

  14. Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotech. 8, 271–276 (2013).

    Article  ADS  Google Scholar 

  15. Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013).

    Article  ADS  Google Scholar 

  16. Wu, S. et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater. 1, 011001 (2014).

    Article  Google Scholar 

  17. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  18. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  19. Lagoudakis, K. G. et al. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106, 115301 (2011).

    Article  ADS  Google Scholar 

  20. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  ADS  Google Scholar 

  21. Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  ADS  Google Scholar 

  22. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  ADS  Google Scholar 

  23. Lu, T.-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Express 20, 5530–5537 (2012).

    Article  ADS  Google Scholar 

  24. Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).

    Article  ADS  Google Scholar 

  25. Agranovich, V. M., Litinskaya, M. & Lidzey, D. G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67, 85311 (2003).

    Article  ADS  Google Scholar 

  26. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  ADS  Google Scholar 

  27. Lee, Y.-H. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013).

    Article  ADS  Google Scholar 

  28. Shi, H., Yan, R., Bertolazzi, S., Brivio, J. & Gao, B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano. 7, 1072–1080 (2013).

    Article  Google Scholar 

  29. Amo, A. et al. Exciton–polariton spin switches. Nature Photon. 4, 361–366 (2010).

    Article  ADS  Google Scholar 

  30. Savona, V., Andreani, L. C., Schwendimann, P. & Quattropani, A. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid-State Commun. 93, 733–739 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

X.L., T.G., Z.S. and V.M. acknowledge support from the Army Research Office (grant no. W911NF1310001) and the National Science Foundation MRSEC programme (grant no. DMR 1120923). F.X. acknowledges support from the Air Force Office of Scientific Research. Y.H.L. and E.C.L. acknowledge support from the Ministry of Science and Technology of the Republic of China (103-2112-M-007-001-MY3). S.K.C. acknowledges support from the NSERC Discovery grant programme.

Author information

Authors and Affiliations

Authors

Contributions

V.M. and F.X. initiated the project. X.L., V.M. and F.X. designed the experiments. X.L. fabricated the microcavity samples. X.L. and Z.S. collected the data and X.L., S.K.C. and V.M. analysed it. E.C.L. and Y.H.L. grew the CVD monolayer MoS2. X.L. and T.G. performed the theoretical modelling. All authors contributed to the discussion of the results and writing the manuscript.

Corresponding author

Correspondence to Vinod M. Menon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Galfsky, T., Sun, Z. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photon 9, 30–34 (2015). https://doi.org/10.1038/nphoton.2014.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing