Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conformal transformation optics

Abstract

The field of transformation optics shows that media containing gradients in optical properties are equivalent to curved geometries of spacetime for the propagation of light. Conformal transformation optics — a particular variant of this feature — can be used to design devices with novel functionalities from inhomogeneous, isotropic dielectric media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conformal invisible cloaks and carpet cloaks.
Figure 2: Conformal power mapping and logarithmic mapping.
Figure 3: Möbius mapping and Schwartz–Christoffel mapping.
Figure 4: Typical refractive index profiles.

Similar content being viewed by others

References

  1. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Leonhardt, U. & Philbin, T. G. General relativity in electrical engineering. New J. Phys. 8, 247–247 (2006).

    Article  ADS  Google Scholar 

  4. Shalaev, V. M. Transforming light. Science 322, 384–386 (2008).

    Article  Google Scholar 

  5. Leonhardt, U. & Philbin, T. G. Transformation optics and the geometry of light. Prog. Opt. 53, 69–152 (2009).

    Article  ADS  Google Scholar 

  6. Chen, H. Y., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nature Mater. 9, 387–396 (2010).

    Article  ADS  Google Scholar 

  7. Kildishev, A. V. & Shalaev V. M. Transformation optics and metamaterials. Phys. Usp. 54, 53 (2011).

    Article  ADS  Google Scholar 

  8. Liu, Y. & Zhang, X. Recent advances in transformation optics. Nanoscale 4, 5277–5292 (2012).

    Article  ADS  Google Scholar 

  9. Zhang, B. Electrodynamics of transformation-based invisibility cloaking. Light: Science & Applications 1, e32 (2012).

    Article  ADS  Google Scholar 

  10. Leonhardt, U. & Philbin, T. Geometry and Light: The Science of Invisibility (Dover, 2010).

    MATH  Google Scholar 

  11. Huidobro, P. A., Nesterov, M. L., Martin-Moreno, L. & Garcia-Vidal, F. J. Transformation optics for plasmonics. Nano Lett. 10, 1985–1990 (2010).

    Article  ADS  Google Scholar 

  12. Liu, Y., Zentgraf, T., Bartal, G. & Zhang, X. Transformational plasmon optics. Nano Lett. 10, 1991–1997 (2010).

    Article  ADS  Google Scholar 

  13. Chen, H. Y. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys. D 43, 113001 (2010).

    Article  ADS  Google Scholar 

  14. Li, J. & Pendry, J. B. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).

    Article  ADS  Google Scholar 

  15. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    Article  ADS  Google Scholar 

  16. Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations. Photon. Nanostr. 6, 87–95 (2008).

    Article  Google Scholar 

  17. Sadeghi, M. M., Li, S., Xu, L., Hou, B. & Chen, H. Y. Transformation optics with Fabry–Pérot resonances. Preprint at http://arxiv.org/abs/1311.0384 (2013).

  18. Chen, H. Y. & Chan, C. T. Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 90, 241105 (2007).

    Article  ADS  Google Scholar 

  19. Chen, H. Y. et al. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys. Rev. Lett. 102, 183903 (2009).

    Article  ADS  Google Scholar 

  20. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory 47, 2075–2084 (1999).

    Article  Google Scholar 

  21. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic microstructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  ADS  Google Scholar 

  22. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  23. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  24. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    Article  ADS  Google Scholar 

  25. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon. 3, 461–463 (2009).

    Article  ADS  Google Scholar 

  26. Gharghi, M. et al. A carpet cloak for visible light. Nano Lett. 11, 2825–2828 (2011).

    Article  ADS  Google Scholar 

  27. Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006).

    Article  ADS  Google Scholar 

  28. Turpin, J. P., Massoud, A. T., Jiang, Z. H., Werner, P. L. & Werner, D. H. Conformal mappings to achieve simple material parameters for transformation optics devices. Opt. Express 18, 244–252 (2010).

    Article  ADS  Google Scholar 

  29. Chen, H. Y., Leonhardt, U. & Tyc, T. Conformal cloak for waves. Phys. Rev. A 83, 055801 (2011).

    Article  ADS  Google Scholar 

  30. Leonhardt, U. & Tyc, T. Broadband invisibility by non-Euclidean cloaking. Science 323, 110–112 (2009).

    Article  ADS  Google Scholar 

  31. Xu, L. & Chen, H. Y. Transformation optics with artificial Riemann sheets. New J. Phys. 15, 113013 (2013).

    Article  ADS  Google Scholar 

  32. Wu, Q., Xu, Y., Li, H. & Chen, H. Y. Cloaking and imaging at the same time. Europhys. Lett. 101, 34004 (2013).

    Article  ADS  Google Scholar 

  33. Li, H., Xu, Y. & Chen, H. Y. Conformal cloaks at Eigenfrequencies. J. Phys. D 46, 135109 (2013).

    Article  ADS  Google Scholar 

  34. Leonhardt, U. Notes on conformal invisibility devices. New J. Phys. 8, 118 (2006).

    Article  ADS  Google Scholar 

  35. Zhang, B., Chan, T. & Wu, B.-I. Lateral shift makes a ground-plane cloak detectable. Phys. Rev. Lett. 104, 233903 (2010).

    Article  ADS  Google Scholar 

  36. Landy, N. I., Kundtz, N. & Smith, D. R. Designing three-dimensional transformation optical media using quasiconformal coordinate transformations. Phys. Rev. Lett. 105, 193902 (2010).

    Article  ADS  Google Scholar 

  37. Ma, H. F., Jiang, W. X., Yang, X. M., Zhou, X. Y. & Cui, T. J. Compact-sized and broadband carpet cloak and free-space cloak. Opt. Express 17, 19947–19959 (2009).

    Article  ADS  Google Scholar 

  38. Xu, X., Feng, Y., Hao, Y., Zhao, J. & Jiang, T. Infrared carpet cloak designed with uniform silicon grating structure. Appl. Phys. Lett. 95, 184102 (2009).

    Article  ADS  Google Scholar 

  39. Ergin, T., Halimeh, J. C., Stenger, N. & Wegener, M. Optical microscopy of 3D carpet cloaks: Ray-tracing calculations. Opt. Express 18, 20535–20545 (2010).

    Article  ADS  Google Scholar 

  40. Zhang, P., Lobet, M. & He, S. Carpet cloaking on a dielectric half-space. Opt. Express 18, 18158–18163 (2010).

    Article  ADS  Google Scholar 

  41. Han, T. & Qiu, C. Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform. Opt. Express 18, 13038–13043 (2010).

    Article  ADS  Google Scholar 

  42. Luo, Y. et al. A rigorous analysis of plane-transformed invisibility. IEEE Trans. Antennas Propag. 57, 3926–3933 (2009).

    Article  ADS  Google Scholar 

  43. Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article  ADS  Google Scholar 

  44. Ma, H. F. & Cui, T. J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nature Commun. 1, 21 (2010).

    Article  ADS  Google Scholar 

  45. Ergin, T., Fischer, J. & Wegener, M. Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak. Phys. Rev. Lett. 107, 173901 (2011).

    Article  ADS  Google Scholar 

  46. Zhang, B., Luo, Y., Liu, X. & Barbastathis, G. Macroscopic invisibility cloak for visible light. Phys. Rev. Lett. 106, 033901 (2011).

    Article  ADS  Google Scholar 

  47. Chen, X. et al. Macroscopic invisibility cloaking of visible light. Nature Commun. 2, 176 (2011).

    Article  ADS  Google Scholar 

  48. Zhou, F. et al. Hiding a realistic object using a broadband terahertz invisibility cloak. Sci. Rep. 1, 78 (2011).

    Article  Google Scholar 

  49. Zhang, J., Liu, L., Luo, Y., Zhang, S. & Mortensen, N. A. Homogeneous optical cloak constructed with uniform layered structures. Opt. Express 19, 8625–8631 (2011).

    Article  ADS  Google Scholar 

  50. Chen, H. & Zheng, B. Broadband polygonal invisibility cloak for visible light. Sci. Rep. 2, 255 (2012).

    Article  ADS  Google Scholar 

  51. Chen, H. et al. Ray-optics cloaking devices for large objects in incoherent natural light. Nature Commun. 4, 2652 (2013).

    Article  ADS  Google Scholar 

  52. Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011).

    Article  ADS  Google Scholar 

  53. Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Mater. 13, 325–355 (2014).

    Article  Google Scholar 

  54. Leonhardt, U. Metamaterials: Towards invisibility in the visible. Nature Mater. 8, 537–538 (2009).

    Article  ADS  Google Scholar 

  55. Li, H., Xu, Y., Wu, Q. & Chen, H. Y. Carpet cloak from optical conformal mapping. Sci. China Inf. Sci. 56, 120411 (2013).

    Google Scholar 

  56. Schmied, R., Halimeh, J. C. & Wegener M. Conformal carpet and grating cloaks. Opt. Express 18, 24361–24367 (2010).

    Article  ADS  Google Scholar 

  57. Halimeh, J. C., Schmied, R. & Wegener, M. Newtonian photorealistic ray tracing of grating cloaks and correlation-function-based cloaking-quality assessment. Opt. Express 19, 6078–6092 (2011).

    Article  ADS  Google Scholar 

  58. Chen, H. Y., Xu, Y., Li, H. & Tyc, T. Playing the tricks of numbers of light sources. New J. Phys. 15, 093034 (2013).

    Article  ADS  Google Scholar 

  59. Xu, Y., Du, S., Gao, L. & Chen, H. Y. Overlapped illusion optics: A perfect lens brings a brighter feature. New J. Phys. 13, 023010 (2011).

    Article  ADS  Google Scholar 

  60. Li, J. J. et al. Overlapped optics induced perfect coherent effects. Sci. Rep. 3, 3569 (2013).

    Article  Google Scholar 

  61. Yao, K. & Jiang, X. Designing feasible optical devices via conformal mapping. J. Opt. Soc. Am. B 28, 1037–1042 (2011).

    Article  ADS  Google Scholar 

  62. Vasic, B., Isic, G., Gajic, R. & Hingerl, K. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime. Opt. Express 18, 20321–20333 (2010).

    Article  ADS  Google Scholar 

  63. Ma, Y. G., Wang, N. & Ong, C. K. Application of inverse, strict conformal transformation to design waveguide devices. J. Opt. Soc. Am. A 27, 968–972 (2010).

    Article  ADS  Google Scholar 

  64. Mekis, A. et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996).

    Article  ADS  Google Scholar 

  65. Lin, S. Y., Chow, E., Hietala, V., Villeneuve, P. R. & Joannopoulos, J. D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998).

    Article  ADS  Google Scholar 

  66. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  ADS  Google Scholar 

  67. Luo, J. et al. Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Appl. Phys. Lett. 100, 221903 (2012).

    Article  ADS  Google Scholar 

  68. Schmiele, M., Varma, V. S., Rockstuhl, C. & Lederer, F. Designing optical elements from isotropic materials by using transformation optics. Phys. Rev. A 81, 033837 (2010).

    Article  ADS  Google Scholar 

  69. Tang, L. et al. General conformal transformation method based on Schwarz–Christoffel approach. Opt. Express 19, 15119–15126 (2011).

    Article  ADS  Google Scholar 

  70. Jiang, X., Yao, K., Wu, Q., Xu, Y. & Chen, H. Y. Conformal transformations to achieve unidirectional behavior of light. New J. Phys. 14, 053023 (2012).

    Article  ADS  Google Scholar 

  71. Gu, C. et al. Experimental realization of a broadband conformal mapping lens for directional emission. Appl. Phys. Lett. 100, 261907 (2012).

    Article  ADS  Google Scholar 

  72. Ren, C., Xiang, Z. & Cen, Z. Design of acoustic devices with isotropic material via conformal transformation. Appl. Phys. Lett. 97, 044101 (2010).

    Article  ADS  Google Scholar 

  73. Xu, L. & Chen, H. Y. Logarithm conformal mapping brings the cloaking effect. Sci. Rep. 4, 6862 (2014).

    Article  ADS  Google Scholar 

  74. Ochiai, T., Leonhardt, U. & Nacher, J. C. A novel design of dielectric perfect invisibility devices. J. Math. Phys. 49, 032903 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 2006).

    Google Scholar 

  76. Tyc, T., Herzánová, L., Šarbort, M. & Bering, K. Absolute instruments and perfect imaging in geometrical optics. New J. Phys. 13, 115004 (2011).

    Article  ADS  Google Scholar 

  77. Maxwell, J. C. Solutions of problems. Camb. Dublin Math. J. 8, 188 (1854).

    Google Scholar 

  78. Leonhardt, U. Perfect imaging without negative refraction. New J. Phys. 11, 093040 (2009).

    Article  ADS  Google Scholar 

  79. Luneburg, R. K. Mathematical Theory of Optics (Univ. California Press, 1964).

    MATH  Google Scholar 

  80. Eaton, J. E. On spherically symmetric lenses. Trans. IRE Antennas Propag. 4, 66–71 (1952).

    Article  Google Scholar 

  81. Miñano, J. C. Perfect imaging in a homogeneous three-dimensional region. Opt. Express 14, 9627–9635 (2006).

    Article  ADS  Google Scholar 

  82. Ma, Y. G., Sahebdivan, S., Ong, C. K., Tyc, T. & Leonhardt, U. Evidence for subwavelength imaging with positive refraction. New J. Phys. 13, 033016 (2011).

    Article  Google Scholar 

  83. Ma, Y. G., Sahebdivan, S., Ong, C. K., Tyc, T. & Leonhardt, U. Subwavelength imaging with materials of in-principle arbitrarily low index contrast. New J. Phys. 14, 025001 (2012).

    Article  ADS  Google Scholar 

  84. Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V. & Shalaev, V. M. Maxwell fish-eye and Eaton lenses emulated by microdroplets. Opt. Lett. 35, 3396–3398 (2010).

    Article  ADS  Google Scholar 

  85. Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nature Mater. 9, 129–132 (2010).

    Article  ADS  Google Scholar 

  86. Ma, H. F. & Cui, T. J. Three-dimensional broadband and broad-angle transformation-optics lens. Nature Commun. 1, 124 (2010).

    Article  ADS  Google Scholar 

  87. Zentgraf, T. et al. Plasmonic Luneburg and Eaton lenses. Nature Nanotech. 6, 151–155 (2011).

    Article  ADS  Google Scholar 

  88. Di Falco, A., Kehr, S. C. & Leonhardt, U. Luneburg lens in silicon photonics. Opt. Express 19, 5156–5162 (2011).

    Article  ADS  Google Scholar 

  89. Ma, Y. G., Ong, C. K., Tyc, T. & Leonhardt, U. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nature Mater. 8, 639–642 (2009).

    Article  ADS  Google Scholar 

  90. Wu, Q. et al. An inside-out Eaton lens made of H-fractal metamaterials. Appl. Phys. Lett. 101, 031903 (2012).

    Article  ADS  Google Scholar 

  91. Šarbort, M. & Tyc, T. Spherical media and geodesic lenses in geometrical optics. J. Opt. 14, 075705 (2012).

    Article  ADS  Google Scholar 

  92. Xu, T., Liu, Y. C., Zhang, Y., Ong, C. K. & Ma, Y. G. Perfect invisibility cloaking by isotropic media. Phys. Rev. A 86, 043827 (2012).

    Article  ADS  Google Scholar 

  93. Wu, L., Tian, X., Ma, H., Yin, M. & Li, D. Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium. Appl. Phys. Lett. 102, 074103 (2013).

    Article  ADS  Google Scholar 

  94. Mitchell-Thomas, R. C., McManus, T. M., Quevedo-Teruel, O., Horsley, S. A. R. & Hao, Y. Perfect surface wave cloaks. Phys. Rev. Lett. 111, 213901 (2013).

    Article  ADS  Google Scholar 

  95. Mitchell-Thomas, R. C., Quevedo-Teruel, O., McManus, T. M., Horsley, S. A. R. & Hao, Y. Lenses on curved surfaces. Opt. Lett. 39, 3551–3554 (2014).

    Article  ADS  Google Scholar 

  96. Horsley, S. A. R., Hooper, I. R., Mitchell-Thomas, R. C. & Quevedo-Teruel, O. Removing singular refractive indices with sculpted surfaces. Sci. Rep. 4, 4876 (2014).

    Article  Google Scholar 

  97. McManus, T. M., Valiente-Kroon, J. A., Horsley, S. A. R. & Hao, Y. Illusions and cloaks for surface waves. Sci. Rep. 4, 5977 (2014).

    Article  ADS  Google Scholar 

  98. Pendry, J. B., Aubry, A., Smith, D. R. & Maier, S. A. Transformation optics and subwavelength control of light. Science 337, 549–552 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Fernández-Domínguez, A. I., Wiener, A., García-Vidal, F. J., Maier, S. A. & Pendry, J. B. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys. Rev. Lett. 108, 106802 (2012).

    Article  ADS  Google Scholar 

  100. Luo, Y., Lei, D. Y., Maier, S. A. & Pendry, J. B. Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: From symmetric to asymmetric edge rounding. ACS Nano 6, 6492–6506 (2012).

    Article  Google Scholar 

  101. Pendry, J. B., Fernández-Domínguez, A. I., Luo, Y. & Zhao, R. K. Capturing photons with transformation optics. Nature Phys. 9, 518–522 (2013).

    Article  ADS  Google Scholar 

  102. Zhao, R. K., Luo, Y., Fernández-Domínguez, A. I. & Pendry, J. B. Description of van der Waals interactions using transformation optics. Phys. Rev. Lett. 111, 033602 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China for Excellent Young Scientists (Grant No. 61322504) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201217). We thank P. Ball and W. Yang for proofreading.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to Huanyang Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Chen, H. Conformal transformation optics. Nature Photon 9, 15–23 (2015). https://doi.org/10.1038/nphoton.2014.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.307

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing