Octave-spanning semiconductor laser

Journal name:
Nature Photonics
Volume:
9,
Pages:
42–47
Year published:
DOI:
doi:10.1038/nphoton.2014.279
Received
Accepted
Published online

Abstract

We present a semiconductor injection laser operating in continuous wave with emission covering more than one octave in frequency and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneous quantum cascade structure operating in the terahertz range. Laser emission in continuous wave takes place from 1.64 THz to 3.35 THz with optical powers in the milliwatt range and more than 80 modes above threshold. For narrow waveguides, a collapse of the free-running beatnote to linewidths of 980 Hz, limited by jitter, indicate frequency comb operation on a spectral bandwidth as wide as 624 GHz, making such devices ideal candidates for octave-spanning semiconductor-laser-based terahertz frequency combs.

At a glance

Figures

  1. Laser characteristics.
    Figure 1: Laser characteristics.

    a, Calculated gain cross-section gc. Blue curves: individual designs. Green curve: total active region. Inset: arrangement of the different active region designs in the laser. b, SEM image of a processed 50-μm-wide dry-etched laser. Inset: electric field intensity distribution in a metal–metal waveguide. c, LIV characteristics (c.w.) at different temperatures for a 2 mm × 150 µm laser. The first power axis is normalized to a measurement with a broad-area terahertz absolute power meter (TK Instruments, aperture 55 × 40 mm2), and the second axis is from an Ophir THz absolute power meter with a smaller detector surface (aperture diameter 12 mm).

  2. Spectral performance.
    Figure 2: Spectral performance.

    a, Laser spectrum (c.w., 9.5 V, 1.06 A, 350 A cm−2) at 25 K measured with a high-pass filter (black), low-pass filter (red) and without filter (blue) for a 2 mm × 150 µm wet-etched laser ridge. b, Octave-spanning spectrum of a dry-etched 2 mm × 50 µm laser (c.w., 9.7 V, 0.35 A, 350 A cm−2) at 18 K. a.u., arbitrary units.

  3. Beatnote evolution.
    Figure 3: Beatnote evolution.

    a, Evolution of the beatnote spectra as a function of bias current when not facing the FTIR spectrometer. b, Beatnote linewidth as a function of driving current. The resolution bandwidth (RBW) was set to 1 kHz for this measurement (blue line). We therefore have slightly higher linewidths than those shown in Fig. 4 where the RBW is set to 100 Hz. For the multi-beatnote regime the distance between the outermost lines was considered to be the linewidth. All measurements were performed at 25 K.

  4. Beatnote analysis.
    Figure 4: Beatnote analysis.

    Spectral evolution along the LIV for a 3 mm × 50 µm dry-etched laser at 25 K. a, Corresponding LIV range, with the shaded area indicating the comb region. In the light grey area, subcombs are observed. b, Spectra for different currents (for a current of 460 mA we have 105 modes above threshold). a.u., arbitrary units. c, Corresponding electrical beatnote measured with an antenna.

  5. Dispersion analysis.
    Figure 5: Dispersion analysis.

    a, GVD simulations including contributions from the material (GaAs), waveguide and gain. The shaded part indicates the spectral range of the comb regime. b,c, Residuals (green) to a linear fit (blue) of the measured peak positions (red) as a function of peak number for a 3 mm × 50 µm laser at 397 mA (b) and 460 mA (c) in c.w. operation (25 K) compared to the same quantity calculated theoretically from the GVD, showing the effect of dispersion in the lasing spectra. In b, the laser is measured in the comb regime, and in c, the laser is influenced by dispersion, causing the curvature of the green and black curve. The spikes in the green curves seem to be artefacts from the subresolution determination of the peak position.

References

  1. Hua, Z., Scalari, G., Faist, J., Dunbar, L. A. & Houdré, R. Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap. J. Appl. Phys. 108, 093104 (2010).
  2. Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nature Photon. 3, 723737 (2009).
  3. Turčinková, D., Amanti, M. I., Castellano, F., Beck, M. & Faist, J. Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition. Appl. Phys. Lett. 102, 181113 (2013).
  4. Xu, J. et al. Tunable terahertz quantum cascade lasers with an external cavity. Appl. Phys. Lett. 91, 121104 (2007).
  5. Hugi, A. et al. External cavity quantum cascade laser tunable from 7.6 to 11.4 um. Appl. Phys. Lett. 95, 061103 (2009).
  6. Riedi, S., Hugi, A., Bismuto, A., Beck, M. & Faist, J. Broadband external cavity tuning in the 3–4 µm window. Appl. Phys. Lett. 103, 031108 (2013).
  7. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831838 (2003).
  8. Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nature Photon. 5, 306313 (2011).
  9. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233237 (2002).
  10. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 12141217 (2007).
  11. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229233 (2012).
  12. Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51B62 (2010).
  13. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nature Photon. 6, 440449 (2012).
  14. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 15421544 (2004).
  15. Yasui, T. et al. Terahertz frequency metrology based on frequency comb. IEEE J. Sel. Top. Quantum Electron. 17, 191201 (2011).
  16. Burghoff, D. et al. Terahertz laser frequency combs. Nature Photon. 8, 462467 (2014).
  17. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 22642267 (2000).
  18. Yasui, T., Kabetani, Y., Saneyoshi, E., Yokoyama, S. & Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).
  19. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 5557 (2010).
  20. Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 51025105 (2000).
  21. Wadsworth, W. et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Am. B 19, 21482155 (2002).
  22. Bellini, M. & Hänsch, T. W. Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. Opt. Lett. 25, 10491051 (2000).
  23. Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).
  24. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373375 (2001).
  25. Fortier, T. M., Jones, D. J. & Cundiff, S. T. Phase stabilization of an octave-spanning Ti:sapphire laser. Opt. Lett. 28, 21982200 (2003).
  26. Khurgin, J. B., Dikmelik, Y., Hugi, A. & Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Appl. Phys. Lett. 104, 081118 (2014).
  27. Amanti, M. et al. Bound-to-continuum terahertz quantum cascade laser with a single quantum well phonon extraction/injection stage. New J. Phys. 11, 125022 (2009).
  28. Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 4546 (2009).
  29. Faist, J. et al. Quantum cascade laser. Science 264, 553556 (1994).
  30. Gmachl, C., Sivco, D. L., Colombelli, R., Capasso, F. & Cho, A. Y. Ultra-broadband semiconductor laser. Nature 415, 883887 (2002).
  31. Freeman, J. R., Marshall, O. P., Beere, H. E. & Ritchie, D. A. Electrically switchable emission in terahertz quantum cascade lasers. Opt. Express 16, 19830 (2008).
  32. Freeman, J. R. et al. Dual wavelength emission from a terahertz quantum cascade laser. Appl. Phys. Lett. 96, 051120 (2010).
  33. Khanna, S. P., Salih, M., Dean, P., Davies, A. G. & Linfield, E. H. Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region. Appl. Phys. Lett. 95, 181101 (2009).
  34. Turčinková, D. et al. Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz. Appl. Phys. Lett. 99, 191104 (2011).
  35. Faist, J. Quantum Cascade Lasers (Oxford Univ. Press, 2013).
  36. Griffiths, P. R. & de Haset, J. A. Fourier Transform Infrared Spectroscopy 2nd edn (Wiley-Interscience, 2007).
  37. Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766768 (2002).
  38. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).
  39. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nature Commun. 5, 5192 (2014).
  40. Fan, W. H. et al. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy. Appl. Spectrosc. 61, 638643 (2007).
  41. Burnett, A. D. et al. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. Analyst 134, 16581668 (2009).
  42. Leahy-Hoppa, M., Fitch, M. & Osiander, R. Terahertz spectroscopy techniques for explosives detection. Anal. Bioanal. Chem. 395, 247257 (2009).
  43. Hübers, H.-W., Eichholz, R., Pavlov, S. & Richter, H. High resolution terahertz spectroscopy with quantum cascade lasers. J. Infrared Millim Terahertz Waves 34, 325341 (2013).
  44. Wang, Y., Soskind, M. G., Wang, W. & Wysocki, G. High-resolution multi-heterodyne spectroscopy based on Fabry–Perot quantum cascade lasers. Appl. Phys. Lett. 104, 031114 (2014).

Download references

Author information

Affiliations

  1. ETH Zurich, Institute of Quantum Electronics, Auguste-Piccard-Hof 1, Zurich 8093, Switzerland

    • Markus Rösch,
    • Giacomo Scalari,
    • Mattias Beck &
    • Jérôme Faist

Contributions

M.R. fabricated the quantum cascade lasers, performed experiments, analysed data, developed the simulations and wrote the paper together with G.S. G.S. designed the quantum cascade lasers, designed and performed experiments, analysed data, developed the simulations and wrote the manuscript together with M.R. M.B. grew the quantum cascade laser material used for this work. J.F. designed the experiments, analysed the data and supervised the work.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary information (2.37 MB)

    Supplementary information

Additional data