Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite

Abstract

Terahertz sensing plays an important role in industry, biology and material science. Most existing techniques for terahertz detection either require bulky optics or need cryogenic cooling, and the uncooled thermal detectors usually suffer from long integration times (1–1,000 ms). We propose, and experimentally demonstrate, a novel scheme based on photoacoustic detection of terahertz pulse radiation. The transient and localized heating in a carbon nanotube–polymer composite by the absorption of terahertz pulse energy produces ultrasound, which is subsequently detected by a highly sensitive acoustic sensor. In contrast to conventional thermal detectors utilizing continuous heat integration, this new method of terahertz detection responds to the energy of each individual terahertz pulse by a time-gated scheme, thus rejecting the continuous radiation from the ambient. In addition, this novel detector possesses advantages such as room-temperature operation, a fast response (0.1 µs) allowing real-time detection, compact size (millimetre scale) and wide spectral response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of the CNT–PDMS composite films.
Figure 2: Experimental set-up for the PADTH device/system and terahertz pulse generation.
Figure 3: Terahertz-induced PA time-domain signal detected by microring ultrasonic detectors.
Figure 4: Characterization of PADTH linear response.
Figure 5: Demonstration of PADTH terahertz imaging.

Similar content being viewed by others

References

  1. Gallot, G., Jamison, S. P., McGowan, R. W. & Grischkowsky, D. Terahertz waveguides. J. Opt. Soc. Am. B 17, 851–863 (2000).

    Article  ADS  Google Scholar 

  2. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  3. Chimot, N. et al. Photomixing at 1.55 µm in ion-irradiated In0.53Ga0.47As on InP. Opt. Express 14, 1856–1861 (2006).

    Article  ADS  Google Scholar 

  4. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  5. Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nature Photon. 5, 306–313 (2011).

    Article  ADS  Google Scholar 

  6. Lu, J.-T. et al. Terahertz polarization-sensitive rectangular pipe waveguides. Opt. Express 19, 21532–21539 (2011).

    Article  ADS  Google Scholar 

  7. Tao, H., Padilla, W. J., Zhang, X. & Averitt, R. D. Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 17, 92–101 (2011).

    Article  ADS  Google Scholar 

  8. Shur, M. Terahertz technology: devices and applications, in Proceedings of 31st European Solid-State Circuits Research Conference, 13–21 (IEEE, 2005).

    Google Scholar 

  9. Linfield, E. Terahertz applications: a source of fresh hope. Nature Photon. 1, 257–258 (2007).

    Article  ADS  Google Scholar 

  10. Sizov, F. & Rogalski, A. THz detectors. Prog. Quantum Electron. 34, 278–347 (2010).

    Article  ADS  Google Scholar 

  11. Karasik, B. S. et al. Record-low NEP in hot-electron titanium nanobolometers. IEEE Trans. Appl. Supercond. 17, 293–297 (2007).

    Article  ADS  Google Scholar 

  12. Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotech. 3, 496–500 (2008).

    Article  ADS  Google Scholar 

  13. Hargreaves, S. & Lewis, R. A. Terahertz imaging: materials and methods. J. Mater. Sci. 18, S299–S303 (2007).

    Google Scholar 

  14. Dobroiu, A. et al. Terahertz imaging system based on a backward-wave oscillator. Appl. Opt. 43, 5637–5646 (2004).

    Article  ADS  Google Scholar 

  15. Hirori, H. et al. Extraordinary carrier multiplication gated by a picosecond electric field pulse. Nature Commun. 2, 594 (2011).

    Article  ADS  Google Scholar 

  16. Hoffmann, M. C. & Fülöp, J. A. Intense ultrashort terahertz pulses: generation and applications. J. Phys. D 44, 083001 (2011).

    Article  ADS  Google Scholar 

  17. Titova, L. V. et al. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue. Biomed. Opt. Express 4, 559–568 (2013).

    Article  Google Scholar 

  18. Zeitler, J. A. et al. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review. J. Pharm. Pharmacol. 59, 209–223 (2007).

    Article  Google Scholar 

  19. Xu, M. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006).

    Article  ADS  Google Scholar 

  20. Wang, L. V. (ed.) Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).

    Book  Google Scholar 

  21. Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).

    Article  ADS  Google Scholar 

  22. Ok, J. G. et al. Electrically addressable hybrid architectures of zinc oxide nanowires grown on aligned carbon nanotubes. Adv. Funct. Mater. 20, 2470–2480 (2010).

    Article  Google Scholar 

  23. Kim, D.-S., Kim, D.-H., Hwang, S. & Jang, J.-H. Broadband terahertz absorber realized by selfassembled multilayer glass spheres. Opt. Express 20, 13566–13572 (2012).

    Article  ADS  Google Scholar 

  24. Hou, B., Easter, J., Mordovanakis, A., Krushelnick, K. & Nees, J. A. Vacuum-free X-ray source based on ultrashort laser irradiation of solids. Opt. Express 16, 17695–17705 (2008).

    Article  ADS  Google Scholar 

  25. Bartel, T., Gaal, P., Reimann, K., Woerner, M. & Elsaesser, T. Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 2805–2807 (2005).

    Article  ADS  Google Scholar 

  26. Kim, K. Y., Taylor, A. J., Glownia, J. H. & Rodriguez, G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photon. 2, 605–609 (2008).

    Article  Google Scholar 

  27. Chao, C.-Y., Ashkenazi, S., Huang, S.-W., O'Donnell, M. & Guo, L. J. High-frequency ultrasound sensors using polymer microring resonators. IEEE Trans. Ultrason. Ferroelect. Freq. Control 54, 957–965 (2007).

    Article  Google Scholar 

  28. Maxwell, A. et al. Polymer microring resonators for high-frequency ultrasound detection and imaging. IEEE J. Sel. Top. Quantum Electron. 14, 191–197 (2008).

    Article  ADS  Google Scholar 

  29. Ling, T., Chen, S.-L. & Guo, L. J. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. App. Phys. Lett. 98, 204103 (2011).

    Article  ADS  Google Scholar 

  30. Hsieh, B.-Y., Chen, S.-L., Ling, T., Guo, L. J. & Li, P.-C. All-optical scanhead for ultrasound and photoacoustic dual-modality imaging. Opt. Express 20, 1588–1596 (2012).

    Article  ADS  Google Scholar 

  31. Lee, Y.-S. Principles of Terahertz Science and Technology (Springer, 2009).

    Google Scholar 

  32. Baac, H. W. et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Sci. Rep. 2, 989 (2012).

    Article  Google Scholar 

  33. Tam, A. C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381–431 (1986).

    Article  ADS  Google Scholar 

  34. Wang, L. V. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 14, 171–179 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank H. W. Baac for input on the CNT–polymer composite structure fabrication and optimization, J. Nees for assistance with the terahertz source and J. Hart for access to his CNT growth facility. This work was supported, in part, by the National Science Foundation Materials Research Science and Engineering Center programme (Division of Materials Research (DMR) 1120923), the Scalable Nanomanufacturing programme (DMR 1120187), and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

S.-L.C., Y.-C.C., T.L. and L.J.G. conceived and designed the experiments. S.-L.C., Y.-C.C. and C.Z. performed the experiments and analysed the data. J.G.O. contributed CNT materials. C.Z. and T.L. prepared microring devices. M.T.M. characterized the terahertz transmission of the nanocomposite. T.B.N. suggested the use of the terahertz source. S.-L.C., T.B.N. and L.J.G. mainly wrote the paper. All authors discussed the results.

Corresponding author

Correspondence to L. Jay Guo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SL., Chang, YC., Zhang, C. et al. Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite. Nature Photon 8, 537–542 (2014). https://doi.org/10.1038/nphoton.2014.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing