Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices

Abstract

The potential of graphene for photonic applications was evidenced by recent demonstrations of modulators, polarization rotators and isolators. These promising yet preliminary results raise crucial questions: what is the optimal performance achievable by more complex designs and how can this optimum be achieved in practice? We answer by first demonstrating that the relevant figures of merit for the devices above are subject to absolute theoretical upper bounds. Strikingly, these limits are related only to the conductivity tensor of graphene; thus, we can provide essential roadmap information such as the best possible device performance versus wavelength and graphene quality. Second, based on the theory developed, physical insight and detailed simulations, we demonstrate how structures closely approaching these fundamental limits can be designed, demonstrating the possibility of significant improvement. These results are believed to be of paramount importance for the design of modulators, rotators and isolators using graphene or other two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene-based capabilities used for a detailed illustration of the method and ‘design space’ dimensions.
Figure 2: Performances of electro-optical modulators.
Figure 3: Theoretical upper bound (γM) to the performance of graphene modulators as a function of multiple parameters.
Figure 4: Performances of non-reciprocal isolators.
Figure 5: Theoretical upper bound (γNR) to the performance of graphene non-reciprocal devices as a function of multiple parameters.
Figure 6: Performances of magneto-optical Kerr rotators.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  2. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  ADS  Google Scholar 

  3. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  4. Tassin, P., Koschny, T., Kafesaki, M. & Soukoulis, C. M. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. 6, 259–264 (2012).

    Article  ADS  Google Scholar 

  5. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  6. Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    Article  ADS  Google Scholar 

  7. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    Article  ADS  Google Scholar 

  8. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  9. Tamagnone, M., Gomez-Diaz, J. S., Mosig, J. R. & Perruisseau-Carrier, J. Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl. Phys. Lett. 101, 214102 (2012).

    Article  ADS  Google Scholar 

  10. Perruisseau-Carrier, J. Graphene for Antenna Applications: Opportunities and Challenges from Microwaves to THz. Paper presented at LAPC2012, Loughborough (IEEE, 2012).

    Google Scholar 

  11. Filter, R. et al. Tunable graphene antennas for selective enhancement of THz-emission. Opt. Express 21, 3737–3745 (2013).

    Article  ADS  Google Scholar 

  12. Rana, F., Strait, J. H., Wang, H. & Manolatou, C. Ultrafast carrier recombination and generation rates for plasmon emission and absorption in graphene. Phys. Rev. B 84, 045437 (2011).

    Article  ADS  Google Scholar 

  13. Yao, Y. et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13, 1257–1264 (2013).

    Article  ADS  Google Scholar 

  14. Li, Z. & Yu, N. Modulation of mid-infrared light using graphene–metal plasmonic antennas. Appl. Phys. Lett. 102, 131108 (2013).

    Article  ADS  Google Scholar 

  15. Pai-Yen, C., Argyropoulos, C. & Alu, A. Terahertz antenna phase shifters using integrally-gated graphene transmission-lines. IEEE Trans. Ant. Propag. 61, 1528–1537 (2013).

    Article  ADS  Google Scholar 

  16. Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nature Commun. 3, 780 (2012).

    Article  ADS  Google Scholar 

  17. Liu, M., Yin, X. & Zhang, X. Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012).

    Article  ADS  Google Scholar 

  18. Sensale-Rodriguez, B. et al. Terahertz imaging employing graphene modulator arrays. Opt. Express 21, 2324–2330 (2013).

    Article  ADS  Google Scholar 

  19. Gómez-Díaz, J. S. & Perruisseau-Carrier, J. Graphene-based plasmonic switches at near infrared frequencies. Opt. Express 21, 15490–15504 (2013).

    Article  ADS  Google Scholar 

  20. Koester, S. J. & Li, M. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012).

    Article  ADS  Google Scholar 

  21. Lee, S. H. et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Mater. 11, 936–941 (2012).

    Article  ADS  Google Scholar 

  22. Fallahi, A. & Perruisseau-Carrier, J. Design of tunable biperiodic graphene metasurfaces. Phys. Rev. B 86, 195408 (2012).

    Article  ADS  Google Scholar 

  23. Amin, M., Farhat, M. & Baǧcı, H. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci. Rep. 3, 2105 (2013).

    Article  ADS  Google Scholar 

  24. Crassee, I. et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett. 12, 2470–2474 (2012).

    Article  ADS  Google Scholar 

  25. Fallahi, A. & Perruisseau-Carrier, J. Manipulation of giant Faraday rotation in graphene metasurfaces. Appl. Phys. Lett. 101, 231605 (2012).

    Article  ADS  Google Scholar 

  26. Shimano, R. et al. Quantum Faraday and Kerr rotations in graphene. Nature Commun. 4, 1841 (2013).

    Article  ADS  Google Scholar 

  27. Sounas, D. L. & Caloz, C. in IEEE International Symposium on Antennas and Propagation (APSURSI), 1597–1600 (IEEE, 2011).

  28. Sounas, D. L. et al. Faraday rotation in magnetically biased graphene at microwave frequencies. Appl. Phys. Lett. 102, 191901 (2013).

    Article  ADS  Google Scholar 

  29. Ubrig, N. et al. Fabry–Perot enhanced Faraday rotation in graphene. Opt. Express 21, 24736–24741 (2013).

    Article  ADS  Google Scholar 

  30. Da, H. & Qiu, C.-W. Graphene-based photonic crystal to steer giant Faraday rotation. Appl. Phys. Lett. 100, 241106 (2012).

    Article  ADS  Google Scholar 

  31. Andryieuski, A. & Lavrinenko, A. V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express 21, 9144–9155 (2013).

    Article  ADS  Google Scholar 

  32. Zhu, W., Rukhlenko, I. D. & Premaratne, M. Graphene metamaterial for optical reflection modulation. Appl. Phys. Lett. 102, 241914 (2013).

    Article  ADS  Google Scholar 

  33. Lu, Z. & Zhao, W. Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 29, 1490–1496 (2012).

    Article  ADS  Google Scholar 

  34. Xu, C., Jin, Y., Yang, L., Yang, J. & Jiang, X. Characteristics of electro-refractive modulating based on graphene–oxide–silicon waveguide. Opt. Express 20, 22398–22405 (2012).

    Article  ADS  Google Scholar 

  35. Lee, S., Lee, K., Liu, C.-H., Kulkarni, G. S. & Zhong, Z. Flexible and transparent all-graphene circuits for quaternary digital modulations. Nature Commun. 3, 1018 (2012).

    Article  ADS  Google Scholar 

  36. Collin, R. E. Field Theory of Guided Waves (IEEE, 1991).

    MATH  Google Scholar 

  37. Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007).

    Article  ADS  Google Scholar 

  38. Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

    Article  ADS  Google Scholar 

  39. Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nature Phys. 7, 48–51, (2011).

    Article  ADS  Google Scholar 

  40. Schaug-pettersen, T. & Tonning, A. On the optimum performance of variable and nonreciprocal networks. IRE Trans. Circ. Theory 6, 150–158 (1959).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hasler Foundation (Project 11149) and by the Swiss National Science Foundation (SNSF) (grant no. 133583).

Author information

Authors and Affiliations

Authors

Contributions

M.T. and J.P.-C. conceived the idea of the bounds on the performance of graphene devices, as well as their practical exploitation (with comments from J.R.M.). M.T. developed the detailed mathematics of the theoretical bounds and A.F. developed the numerical electromagnetic solver. M.T. performed the simulations. M.T. and J.P.-C. wrote the manuscript (with comments from A.F.). J.P.-C. led the project.

Corresponding author

Correspondence to Julien Perruisseau-Carrier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamagnone, M., Fallahi, A., Mosig, J. et al. Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices. Nature Photon 8, 556–563 (2014). https://doi.org/10.1038/nphoton.2014.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing