Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emitters of N-photon bundles

Abstract

Controlling the output of a light emitter is one of the basic tasks in photonics, with landmarks such as the development of the laser and single-photon sources. The ever growing range of quantum applications is making it increasingly important to diversify the available quantum sources. Here, we propose a cavity quantum electrodynamics scheme to realize emitters that release their energy in groups (or ‘bundles’) of N photons (where N is an integer). Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state-of-the-art samples. The emission can be tuned with the system parameters so that the device behaves as a laser or as an N-photon gun. Here, we develop the theoretical formalism to characterize such emitters, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hamiltonian and dissipative cavity QED.
Figure 2: Energy levels of the two limiting cases of excitation.
Figure 3: Resonances in the photon-correlation functions.
Figure 4: Dynamics of the emission when probing the two-photon resonance in various regimes of excitation.
Figure 5: Efficiency and characterization of N-photon emission for 2 ≤ N ≤ 5

Similar content being viewed by others

References

  1. Haroche, S. Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).

    Article  ADS  Google Scholar 

  2. Lounis, B. & Orrit, M. Rep. Prog. Phys. 68, 1129 10.1088/0034-4885/68/5/R04(2005).

    Article  ADS  Google Scholar 

  3. Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

    Article  ADS  Google Scholar 

  4. O'Brien, J. L., Furusawa, A. & Vučkovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  5. Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  7. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  8. Horton, N. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photon. 7, 205–209 (2013).

    Article  ADS  Google Scholar 

  9. Sim, N., Cheng, M. F., Bessarab, D., Jones, C. M. & Krivitsky, L. A. Measurement of photon statistics with live photoreceptor cells. Phys. Rev. Lett. 109, 113601 10.1103/PhysRevLett.109.113601(2012).

    Article  ADS  Google Scholar 

  10. Ball, P. Physics of life: the dawn of quantum biology. Nature 474, 272–274 (2011).

    Article  ADS  Google Scholar 

  11. Brune, M. et al. Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    Article  ADS  Google Scholar 

  12. Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).

    Article  ADS  Google Scholar 

  13. Kasprzak, J. et al. Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Mater. 9, 304–308 (2010).

    Article  ADS  Google Scholar 

  14. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theory with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  15. Nguyen, H. S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

    Article  ADS  Google Scholar 

  16. Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 10.1103/PhysRevLett.108.093602(2012).

    Article  ADS  Google Scholar 

  17. Jayakumar, H. et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013).

    Article  ADS  Google Scholar 

  18. Majumdar, A. et al. Linewidth broadening of a quantum dot coupled to an off-resonant cavity. Phys. Rev. B 82, 045306 10.1103/PhysRevB.82.045306(2010).

    Article  ADS  Google Scholar 

  19. Hughes, S. & Carmichael, H. J. Stationary inversion of a two level system coupled to an off-resonant cavity with strong dissipation. Phys. Rev. Lett. 107, 193601 10.1103/PhysRevLett.107.193601(2011).

    Article  ADS  Google Scholar 

  20. Laussy, F. P., del Valle, E., Schrapp, M., Laucht, A. & Finley, J. J. Climbing the Jaynes–Cummings ladder by photon counting. J. Nanophoton. 6, 061803 (2012).

    Article  ADS  Google Scholar 

  21. Chough, Y.-T., Moon, H.-J., Nha, H. & An, K. Single-atom laser based on multiphoton resonances at far-off resonance in the Jaynes–Cummings ladder. Phys. Rev. A 63, 013804 10.1103/PhysRevA.63.013804(2000).

    Article  ADS  Google Scholar 

  22. Birnbaum, K. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  23. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  ADS  Google Scholar 

  24. Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nature Phys. 4, 382–385 (2008).

    Article  ADS  Google Scholar 

  25. Bishop, L. S. et al. Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105–109 (2009).

    Article  ADS  Google Scholar 

  26. Cohen-Tannoudji, C. & Reynaud, S. Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam. J. Phys. B 10, 345–363 (1977).

    Article  ADS  Google Scholar 

  27. Zakrzewski, J., Lewenstein, M. & Mossberg, T. W. Theory of dressed-state lasers. I. Effective Hamiltonians and stability properties. Phys. Rev. A 44, 7717–7731 (1991).

    Article  ADS  Google Scholar 

  28. Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

    Article  ADS  Google Scholar 

  29. Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & del Valle, E. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 10.1088/1367-2630/15/3/033036(2013).

    Article  ADS  Google Scholar 

  30. Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007).

    Article  ADS  Google Scholar 

  31. Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photon. 6, 605–609 (2012).

    Article  ADS  Google Scholar 

  32. Majumdar, A., Englund, D., Bajcsy, M. & Vučković, J. Nonlinear temporal dynamics of a strongly coupled quantum-dot–cavity system. Phys. Rev. A 85, 033802 (2012).

    Article  ADS  Google Scholar 

  33. Del Valle, E., Gonzalez-Tudela, A., Cancellieri, E., Laussy, F. P. & Tejedor, C. Generation of a two-photon state from a quantum dot in a microcavity. New J. Phys. 13, 113014 10.1088/1367-2630/13/11/113014(2011).

    Article  ADS  Google Scholar 

  34. Zubairy, M. S. & Yeh, J. J. Photon statistics in multiphoton absorption and emission processes. Phys. Rev. A 21, 1624–1631 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  35. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  36. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2011).

    Google Scholar 

  37. Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008).

    Article  ADS  Google Scholar 

  38. Hong, H.-G., Nha, H., Lee, J.-H. & An, K. Rigorous criterion for characterizing correlated multiphoton emissions. Opt. Express 18, 7092–7100 (2010).

    Article  ADS  Google Scholar 

  39. Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101–144 (1998).

    Article  ADS  Google Scholar 

  40. Wiersig, J. et al. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature 460, 245–249 (2009).

    Article  ADS  Google Scholar 

  41. Srinivas, M. D. & Davies, E. B. Photon counting probabilities in quantum optics. Opt. Acta 28, 981–996 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  42. Zoller, P., Marte, M. & Walls, D. F. Quantum jumps in atomic systems. Phys. Rev. A 35, 198–207 (1987).

    Article  ADS  Google Scholar 

  43. Osad'ko, I. S. Photon distribution functions of fluorescence photons from single nanoparticles: three different photon counting methods. Opt. Spectrosc. 107, 948–958 (2009).

    Article  ADS  Google Scholar 

  44. Carmichael, H. An Open Systems Approach to Quantum Optics Ch. 6, 110 (Springer, 1993).

    Book  Google Scholar 

  45. Loudon, R. The Quantum Theory of Light (Oxford Science Publications, 2000).

    MATH  Google Scholar 

  46. Ota, Y., Iwamoto, S., Kumagai, N. & Arakawa, Y. Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett. 107, 233602 (2011).

    Article  ADS  Google Scholar 

  47. Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

    Article  ADS  Google Scholar 

  48. Nissen, F., Fink, J. M., Mlynek, J. A., Wallraff, A. & Keeling, J. Collective suppression of linewidths in circuit QED. Phys. Rev. Lett. 110, 203602 (2013).

    Article  ADS  Google Scholar 

  49. Del Valle, E. Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED effects and spectral filtering. New J. Phys. 15, 025019 10.1088/1367-2630/15/2/025019(2013).

    Article  ADS  Google Scholar 

  50. Boitier, F., Godard, A., Rosencher, E. & Fabre, C. Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nature Phys. 5, 267–270 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Sánchez Wolff for assistance with Fig. 1. This work was supported by the POLAFLOW European Research Council starting grant, the Marie-Curie project Sensing Quantum Information Correlations and the Spanish Ministerio de Economía y Competitividad (MAT2011-22997). C.S.M. acknowledges a Formación de Personal Investigador grant. A.G.T and K.M. acknowledge support from the Alexander Von Humboldt Foundation and F.P.L. acknowledges support from a Ramón y Cajal contract.

Author information

Authors and Affiliations

Authors

Contributions

F.P.L. and E.d.V. proposed the idea. C.S.M., E.d.V. and F.P.L. developed the theoretical formalism and the conceptual tools. C.S.M. implemented the theoretical methods and analysed the data. A.G.T., K.M., S.L., M.K. and J.J.F. contributed material, analysis tools and expertise. F.P.L., C.S.M., E.d.V., C.T. and J.J.F. wrote the main paper. C.S.M., E.d.V., A.G.T. and F.P.L. wrote the Supplementary Information. F.P.L. supervised the research. All authors discussed the results and its implications and commented on the manuscript.

Corresponding author

Correspondence to F. P. Laussy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4135 kb)

Supplementary movie

Supplementary movie (MOV 2094 kb)

Supplementary movie

Supplementary movie (MP4 2252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, C., del Valle, E., Tudela, A. et al. Emitters of N-photon bundles. Nature Photon 8, 550–555 (2014). https://doi.org/10.1038/nphoton.2014.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing