Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions

An Erratum to this article was published on 28 May 2014

This article has been updated

Abstract

The Greenberger–Horne–Zeilinger (GHZ) states1 play a significant role in fundamental tests of quantum mechanics2 and are one of the central resources of quantum-enhanced high-precision metrology3, fault-tolerant quantum computing4 and distributed quantum networks5. However, in a noisy environment, entanglement becomes fragile as the particle number increases6,7,8. Recently, a concatenated GHZ (C-GHZ) state, which retains the advantages of conventional GHZ states but is more robust in a noisy environment, was proposed9. Here, we experimentally prepare a three-logical-qubit C-GHZ state. By characterizing the dynamics of entanglement quality of the C-GHZ state under simple collective noise, we demonstrate that the C-GHZ state is more robust than the conventional GHZ state. Our work provides an essential tool for quantum-enhanced measurement and enables a new route to prepare and manipulate macroscopic entanglement. Our result is also useful for linear-optical quantum computation schemes whose building blocks are GHZ-type states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for encoding the C-GHZ state |ϕN,2+〉 with physical qubits.
Figure 2: Experimental set-up to prepare and characterize the three-logical-qubit C-GHZ state |ϕ3,2+〉.
Figure 3: Experimental results for creating the three-logical-qubit C-GHZ state.
Figure 4: Evolution of the C-GHZ state under simulated noise in comparison with the normal GHZ state.

Similar content being viewed by others

Change history

  • 20 April 2014

    In the version of this Letter originally published in print, the following mathematical expressions were formatted incorrectly. On page 1, column 1, paragraph 2, line 2, the two symbols "N" should not be superscripted relative to the symbol "". The correct expression is (|0〉N + |1〉N)/√2. Similarly, equation (1) should appear as |ϕ±N,m〉 = (|GHZ+mN ±|GHZmN)/√2. On page 1, column 2, paragraph 1, line 3, the two symbols “m” should not be superscripted relative to the symbol "". The correct expression is (|0〉m ± |1〉m)/√2. In equation (2), the two symbols “3” should not be superscripted relative to the symbol "". The correct expression is |ϕ+3,2〉 = (|Φ+3 + |Φ3)/√2 = (|HHHHHH〉 + |HHVVVV〉 + |VVVVHH〉 + |VVHHVV〉)231456/2. In the expression for Uθ appearing on page 4, column 1, paragraph 3, line 5, the symbol "y" should be subscripted relative to the symbol "σ". The correct expression is Uθ = e i θ σ y . These typographical errors have been corrected in both the HTML and PDF versions of this Letter.

References

  1. Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell's Theorem, Quantum Theory, and Conceptions of the Universe 69–72 (ed. Kafatos, M.) (Kluwer, 1989).

    Google Scholar 

  2. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  3. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  4. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  ADS  Google Scholar 

  5. Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

    Article  ADS  Google Scholar 

  6. Dür, W., Simon, C. & Cirac, J. I. Effective size of certain macroscopic quantum superpositions. Phys. Rev. Lett. 89, 210402 (2002).

    Article  ADS  Google Scholar 

  7. Dür, W. & Briegel, H.-J. Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004).

    Article  ADS  Google Scholar 

  8. Aolita, L., Chaves, R., Cavalcanti, D., Acín, A. & Davidovich, L. Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008).

    Article  ADS  Google Scholar 

  9. Fröwis, F. & Dür, W. Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011).

    Article  ADS  Google Scholar 

  10. Yao, X.-C. et al. Observation of eight-photon entanglement. Nature Photon. 6, 225–228 (2012).

    Article  ADS  Google Scholar 

  11. Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  12. Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).

    Article  ADS  Google Scholar 

  13. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    Article  ADS  Google Scholar 

  14. Zanardi, P. & Rasetti, M. Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997).

    Article  ADS  Google Scholar 

  15. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    Article  ADS  Google Scholar 

  16. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article  ADS  Google Scholar 

  17. Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996).

    Article  ADS  Google Scholar 

  18. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  19. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  20. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  21. Hofmann, H. F. & Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002).

    Article  ADS  Google Scholar 

  22. Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).

    Article  ADS  Google Scholar 

  23. Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).

    Article  ADS  Google Scholar 

  24. Okamoto, R., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).

    Article  ADS  Google Scholar 

  25. Hofmann, H. F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  26. Bourennane, M. et al. Experimental detection of multipartite entanglement using witness operators. Phys. Rev. Lett. 92, 087902 (2004).

    Article  ADS  Google Scholar 

  27. Gühne, O., Lu, C.-Y., Gao, W.-B. & Pan, J.-W. Toolbox for entanglement detection and fidelity estimation. Phys. Rev. A 76, 030305 (2007).

    Article  ADS  Google Scholar 

  28. Dür, W., Cirac, J. I. & Tarrach, R. Separability and distillability of multiparticle quantum systems. Phys. Rev. Lett. 83, 3562–3565 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the CAS, the National Fundamental Research Program (grant no. 2011CB921300).

Author information

Authors and Affiliations

Authors

Contributions

H.L., L.-K.C., N.-L.L., Y.-A.C. and J.-W.P. conceived and designed the experiments. H.L., L.-K.C., C.L., P.X., X.-C.Y. and L.L. carried out the experiments. All authors analysed the data and wrote the paper. N.-L.L., Y.-A.C. and J.-W.P. supervised the whole project.

Corresponding authors

Correspondence to Nai-Le Liu, Yu-Ao Chen or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Chen, LK., Liu, C. et al. Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nature Photon 8, 364–368 (2014). https://doi.org/10.1038/nphoton.2014.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing