Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotropic three-dimensional super-resolution imaging with a self-bending point spread function

Abstract

Airy beams maintain their intensity profiles over a large propagation distance without substantial diffraction and exhibit lateral bending during propagation1,2,3,4,5. This unique property has been exploited for the micromanipulation of particles6, the generation of plasma channels7 and the guidance of plasmonic waves8, but has not been explored for high-resolution optical microscopy. Here, we introduce a self-bending point spread function (SB-PSF) based on Airy beams for three-dimensional super-resolution fluorescence imaging. We designed a side-lobe-free SB-PSF and implemented a two-channel detection scheme to enable unambiguous three-dimensional localization of fluorescent molecules. The lack of diffraction and the propagation-dependent lateral bending make the SB-PSF well suited for precise three-dimensional localization of molecules over a large imaging depth. Using this method, we obtained super-resolution imaging with isotropic three-dimensional localization precision of 10–15 nm over a 3 µm imaging depth from 2,000 photons per localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-bending point spread function (SB-PSF).
Figure 2: Three-dimensional localization precision of single fluorescent molecules using the SB-PSF.
Figure 3: STORM imaging of in vitro polymerized microtubules using the SB-PSF.
Figure 4: STORM imaging of microtubules and mitochondria in cells using the SB-PSF.

Similar content being viewed by others

References

  1. Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    Article  ADS  Google Scholar 

  2. Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007).

    Article  ADS  Google Scholar 

  3. Siviloglou, G. A. & Christodoulides, D. N. Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007).

    Article  ADS  Google Scholar 

  4. Zhang, P. et al. Nonparaxial Mathieu and Weber accelerating beams. Phys. Rev. Lett. 109, 193901 (2012).

    Article  ADS  Google Scholar 

  5. Kaminer, I., Bekenstein, R., Nemirovsky, J. & Segev, M. Nondiffracting accelerating wave packets of Maxwell's equations. Phys. Rev. Lett. 108, 163901 (2012).

    Article  ADS  Google Scholar 

  6. Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nature Photon. 2, 675–678 (2008).

    Article  ADS  Google Scholar 

  7. Polynkin, P., Kolesik, M., Moloney, J. V., Siviloglou, G. A. & Christodoulides, D. N. Curved plasma channel generation using ultraintense Airy beams. Science 324, 229–232 (2009).

    Article  ADS  Google Scholar 

  8. Zhang, P. et al. Plasmonic Airy beams with dynamically controlled trajectories. Opt. Lett. 36, 3191–3193 (2011).

    Article  ADS  Google Scholar 

  9. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  10. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    Article  Google Scholar 

  11. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–796 (2006).

    Article  Google Scholar 

  12. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  13. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  ADS  Google Scholar 

  14. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  ADS  Google Scholar 

  15. Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nature Methods 5, 527–529 (2008).

    Article  Google Scholar 

  16. Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    Article  ADS  Google Scholar 

  17. Xu, K., Babcock, H. P. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nature Methods 9, 185–188 (2012).

    Article  Google Scholar 

  18. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

    Article  ADS  Google Scholar 

  19. Aquino, D. et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nature Methods 8, 353–359 (2011).

    Article  Google Scholar 

  20. Tang, J., Akerboom, J., Vaziri, A., Looger, L. L. & Shank, C. V. Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc. Natl Acad. Sci. USA 107, 10068–10073 (2010).

    Article  ADS  Google Scholar 

  21. Broky, J., Siviloglou, G. A., Dogariu, A. & Christodoulides, D. N. Self-healing properties of optical Airy beams. Opt. Express 16, 12880–12891 (2008).

    Article  ADS  Google Scholar 

  22. Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods 5, 1047–1052 (2008).

    Article  Google Scholar 

  23. Bates, M., Blosser, T. R. & Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94, 108101 (2005).

    Article  ADS  Google Scholar 

  24. Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J. Am. Chem. Soc. 127, 3801–3806 (2005).

    Article  Google Scholar 

  25. Dempsey, G. T. D., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods 8, 1027–1036 (2011).

    Article  Google Scholar 

  26. Lee, H.-L. D., Sahl, S. J., Lew, M. D. & Moerner, W. E. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl. Phys. Lett. 100, 153701 (2012).

    Article  ADS  Google Scholar 

  27. Quirin, S., Pavani, S. R. P. & Piestun, R. Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions. Proc. Natl Acad. Sci. USA 109, 675–679 (2012).

    Article  ADS  Google Scholar 

  28. Gebhardt, J. C. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nature Methods 10, 421–426 (2013).

    Article  Google Scholar 

  29. Grover, G., Quirin, S., Fiedler, C. & Piestun, R. Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging. Biomed. Opt. Express 2, 3010–3020 (2011).

    Article  Google Scholar 

  30. Vaughan, J. C., Jia, S. & Zhuang, X. Ultrabright photoactivatable fluorophores created by reductive caging. Nature Methods 9, 1181–1184 (2012).

    Article  Google Scholar 

  31. Egner, A. & Hell, S. W. in Handbook of Biological Confocal Microscopy (ed. Pawley, J. ) Ch. 20 (Springer, 2006).

    Google Scholar 

Download references

Acknowledgements

This project is in part supported by the National Institutes of Health. X.Z. is a Howard Hughes Medical Institute investigator. J.C.V. is supported in part by a Burroughs Wellcome Fund Career Award at the Scientific Interface.

Author information

Authors and Affiliations

Authors

Contributions

S.J. and X.Z. conceived and designed the project. S.J. performed the experiments, simulations and analysis. J.C.V. helped with the experimental set-up. S.J., J.C.V. and X.Z. wrote the manuscript.

Corresponding author

Correspondence to Xiaowei Zhuang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1732 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, S., Vaughan, J. & Zhuang, X. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nature Photon 8, 302–306 (2014). https://doi.org/10.1038/nphoton.2014.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing