Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-plasmon quantum interference

Abstract

Surface plasma waves on metals arise from the collective oscillation of many free electrons in unison. These waves are usually quantized by direct analogy to electromagnetic fields in free space1,2,3, with the surface plasmon, the quantum of the surface plasma wave, playing the same role as the photon. It follows that surface plasmons should exhibit all the same quantum phenomena that photons do. Here, we report a plasmonic version of the Hong–Ou–Mandel experiment4, in which we observe unambiguous two-photon quantum interference between plasmons, confirming that surface plasmons faithfully reproduce this effect with the same visibility and mutual coherence time, to within measurement error, as in the photonic case. These properties are important if plasmonic devices are to be employed in quantum information applications5, which typically require indistinguishable particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the TPQI measurement.
Figure 2: Design of the waveguides.
Figure 3: Measurements of TPQI in 50–50 directional couplers.
Figure 4: TPQI in plasmonic couplers of different lengths.

Similar content being viewed by others

References

  1. Elson, J. M. & Ritchie, R. H. Photon interactions at a rough metal surface. Phys. Rev. B 4, 4129–4138 (1971).

    Article  ADS  Google Scholar 

  2. Tame, M. S. et al. Single-photon excitation of surface plasmon polaritons. Phys. Rev. Lett. 101, 190504 (2008).

    Article  ADS  Google Scholar 

  3. Ballester, D., Tame, M. S. & Kim, M. S. Quantum theory of surface-plasmon polariton scattering. Phys. Rev. A 82, 012325 (2010).

    Article  ADS  Google Scholar 

  4. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  5. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  6. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  7. Kolesov, R. et al. Wave–particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    Article  ADS  Google Scholar 

  8. Heeres, R. W. et al. On-chip single plasmon detection. Nano Lett. 10, 661–664 (2010).

    Article  ADS  Google Scholar 

  9. Di Martino, G. et al. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett. 12, 2504–2508 (2012).

    Article  ADS  Google Scholar 

  10. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  Google Scholar 

  11. Fasel, S. et al. Energy–time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).

    Article  ADS  Google Scholar 

  12. Fasel, S., Halder, M., Gisin, N. & Zbinden, H. Quantum superposition and entanglement of mesoscopic plasmons. New J. Phys. 8, 13 (2006).

    Article  ADS  Google Scholar 

  13. Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).

    Article  ADS  Google Scholar 

  14. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  15. Ou, Z. Y. & Mandel, L. Derivation of reciprocity relations for a beam splitter from energy balance. Am. J. Phys. 57, 66–67 (1989).

    Article  ADS  Google Scholar 

  16. Ou, Z. Y., Gage, E. C., Magill, B. E. & Mandel, L. Fourth-order interference technique for determining the coherence time of a light beam. J. Opt. Soc. Am. B 6, 100–103 (1989).

    Article  ADS  Google Scholar 

  17. Ren, X.-F., Guo, G.-P., Huang, Y.-F., Wang, Z.-W. & Guo, G.-C. Plasmon assisted transmission of single photon wavepacket. Metamaterials 1, 106–109 (2007).

    Article  ADS  Google Scholar 

  18. Wang, S. M. et al. Hong–Ou–Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial. Opt. Express 20, 5213–5218 (2012).

    Article  ADS  Google Scholar 

  19. Fujii, G. et al. Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide. Opt. Lett. 37, 1535–1537 (2012).

    Article  ADS  Google Scholar 

  20. Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nature Nanotech. 8, 719–722 (2013).

    Article  ADS  Google Scholar 

  21. Shoji, T., Tsuchizawa, T., Watanabe, T., Yamada, K. & Morita, H. Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres. Electron. Lett. 38, 1669–1670 (2002).

    Article  Google Scholar 

  22. Briggs, R. M., Grandidier, J., Burgos, S. P., Feigenbaum, E. & Atwater, H. A. Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett. 10, 4851–4857 (2010).

    Article  ADS  Google Scholar 

  23. Barnett, S. M., Jeffers, J., Gatti, A. & Loudon, R. Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research under MURI awards FA9550-12-1-0488 (J.S.F.), FA9550-12-1-0024 (H.L.) and FA9550-04-1-0434 (Y.A.K.). The authors thank the Kavli Nanoscience Institute at Caltech for access to and maintenance of fabrication equipment. Additionally, J.S.F. would like to thank R.M. Briggs for fabrication training and advice.

Author information

Authors and Affiliations

Authors

Contributions

J.S.F. and H.A.A. designed the experiment. J.S.F. and Y.A.K. built and tested the SPDC source. J.S.F. and H.L. built and tested the waveguide-coupling set-up. J.S.F. fabricated the waveguides. H.L. performed the measurements of quantum interference. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Harry A. Atwater.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakonas, J., Lee, H., Kelaita, Y. et al. Two-plasmon quantum interference. Nature Photon 8, 317–320 (2014). https://doi.org/10.1038/nphoton.2014.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.40

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing