Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The generation, characterization and applications of broadband isolated attosecond pulses

Abstract

The generation of extremely short isolated attosecond pulses requires both a broad spectral bandwidth and control of the spectral phase. Rapid progress has been made in both aspects, leading to the generation of light pulses as short as 67 as in 2012, and broadband attosecond continua covering a wide range of extreme ultraviolet and soft X-ray wavelengths. Such pulses have been successfully applied in photoelectron and photoion spectroscopy and recently developed attosecond transient absorption spectroscopy to study electron dynamics in matter. In this Review, we discuss significant recent advances in the generation, characterization and applications of ultrabroadband, isolated attosecond pulses with spectral bandwidths comparable to the central frequency. These pulses can in principle be compressed to a single optical cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gating an ultrabroadband isolated attosecond pulse.
Figure 2: Attosecond pulse characterization.
Figure 3: Conventional methods for attosecond pulse compression.
Figure 4: Schematic of attosecond electron interferometry and attosecond transient absorption measurements in helium.

Similar content being viewed by others

References

  1. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  2. Nisoli, M. et al. Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522–524 (1997).

    ADS  Google Scholar 

  3. Chang, Z. & Corkum, P. Attosecond photon sources: the first decade and beyond [Invited]. J. Opt. Soc. Am. B 27, B9–B17 (2010).

    Google Scholar 

  4. Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

    ADS  Google Scholar 

  5. Mashiko, H. et al. Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time. Opt. Lett. 34, 3337–3339 (2009).

    ADS  Google Scholar 

  6. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Google Scholar 

  7. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  8. Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nature Phys. 5, 815–820 (2009).

    ADS  Google Scholar 

  9. Power, E. P. et al. XFROG phase measurement of threshold harmonics in a Keldysh-scaled system. Nature Photon. 4, 352–356 (2010).

    ADS  Google Scholar 

  10. Chang, Z., Rundquist, A., Wang, H., Murnane, M. M. & Kapteyn, H. C. Generation of coherent soft X rays at 2.7 nm using high harmonics. Phys. Rev. Lett. 79, 2967–2970 (1997).

    ADS  Google Scholar 

  11. Spielmann, C. et al. Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661–664 (1997).

    ADS  Google Scholar 

  12. Shan, B. & Chang, Z. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 65, 011804(R) (2001).

    ADS  Google Scholar 

  13. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    ADS  MathSciNet  Google Scholar 

  14. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    ADS  Google Scholar 

  15. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Google Scholar 

  16. Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nature Photon. 5, 655–663 (2011).

    ADS  Google Scholar 

  17. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  18. Nisoli, M. et al. Effects of carrier-envelope phase differences of few-optical-cycle light pulses in single-shot high-order-harmonic spectra. Phys. Rev. Lett. 91, 213905 (2003).

    ADS  Google Scholar 

  19. Haworth, C. A. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nature Phys. 3, 52–57 (2007).

    ADS  Google Scholar 

  20. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Google Scholar 

  21. Witting, T. et al. Sub-4-fs laser pulse characterization by spatially resolved spectral shearing interferometry and attosecond streaking. J. Phys. B. 45, 074014 (2012).

    ADS  Google Scholar 

  22. Jullien, A. et al. Ionization phase-match gating for wavelength-tunable isolated attosecond pulse generation. Appl. Phys. B 93, 433–442 (2008).

    ADS  Google Scholar 

  23. Abel, M. J. et al. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366, 9–14 (2009).

    Google Scholar 

  24. Thomann, I. et al. Characterizing isolated attosecond pulses from hollow-core waveguides using multi-cycle driving pulses. Opt. Express 17, 4611–4633 (2009).

    ADS  Google Scholar 

  25. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

    ADS  Google Scholar 

  26. Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    ADS  Google Scholar 

  27. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    ADS  Google Scholar 

  28. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    ADS  Google Scholar 

  29. Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    ADS  Google Scholar 

  30. Mashiko, H. et al. Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields. Opt. Express 18, 25887–25895 (2010).

    ADS  Google Scholar 

  31. Vincenti, H. & Quéré, F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 108, 113904 (2012).

    ADS  Google Scholar 

  32. Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nature Photon. 7, 651–656 (2013).

    ADS  Google Scholar 

  33. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    ADS  Google Scholar 

  34. Hassan, M. Th. et al. Invited article: attosecond photonics: synthesis and control of light transients. Rev. Sci. Instrum. 83, 111301 (2012).

    ADS  Google Scholar 

  35. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  36. Budil, K. S., Salières, P., L'Huillier, A., Ditmire, T. & Perry, M. D. Influence of ellipticity on harmonic generation. Phys. Rev. A 48, R3437–R3440 (1993).

    ADS  Google Scholar 

  37. Möller, M. et al. Dependence of high-order-harmonic-generation yield on driving-laser ellipticity. Phys. Rev. A 86, 011401(R) (2012).

    ADS  Google Scholar 

  38. Sansone, G. et al. Shaping of attosecond pulses by phase-stabilized polarization gating. Phys. Rev. A 80, 063837 (2009).

    ADS  Google Scholar 

  39. Marceau, C., Gingras, G. & Witzel, B. Continuously adjustable gate width setup for attosecond polarization gating: theory and experiment. Opt. Express 19, 3576–3591 (2011).

    ADS  Google Scholar 

  40. Strelkov, V. et al. Single attosecond pulse production with an ellipticity-modulated driving IR pulse. J. Phys. B 38, L161–L167 (2005).

    Google Scholar 

  41. Sansone, G. et al. Towards atomic unit pulse duration by polarization-controlled few-cycle pulses. J. Phys. B 42, 134005 (2009).

    ADS  Google Scholar 

  42. Mauritsson, J. et al. Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett. 97, 013001 (2006).

    ADS  Google Scholar 

  43. Oishi, Y., Kaku, M., Suda, A., Kannari, F. & Midorikawa, K. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field. Opt. Express 14, 7230–7237 (2006).

    ADS  Google Scholar 

  44. Tzallas, P. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nature Phys. 3, 846–850 (2007).

    ADS  Google Scholar 

  45. Skantzakis, E., Tzallas, P., Kruse, J., Kalpouzos, C. & Charalambidis, D. Coherent continuum extreme ultraviolet radiation in the sub-100-nJ range generated by a high-power many-cycle laser field. Opt. Lett. 34, 1732–1734 (2009).

    ADS  Google Scholar 

  46. Mashiko, H., Oguri, K. & Sogawa, T. Attosecond pulse generation in carbon K-edge region (284 eV) with sub-250 μJ driving laser using generalized double optical gating method. Appl. Phys. Lett. 102, 171111 (2013).

    ADS  Google Scholar 

  47. Wu, Y. et al. Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser. Appl. Phys. Lett. 102, 201104 (2013).

    ADS  Google Scholar 

  48. Wheeler, J. A. et al. Attosecond lighthouses from plasma mirrors. Nature Photon. 6, 829–833 (2012).

    ADS  Google Scholar 

  49. Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nature Phys. 4, 386–389 (2008).

    ADS  Google Scholar 

  50. Schmidt, B. E. et al. High harmonic generation with long-wavelength few-cycle laser pulses. J. Phys. B 45, 074008 (2012).

    ADS  Google Scholar 

  51. Doumy, G. et al. Attosecond synchronization of high-order harmonics from midinfrared drivers. Phys. Rev. Lett. 102, 093002 (2009).

    ADS  Google Scholar 

  52. Takahashi, E. J., Kanai, T., Ishikawa, K. L., Nabekawa, Y. & Midorikawa, K. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media. Phys. Rev. Lett. 101, 253901 (2008).

    ADS  Google Scholar 

  53. Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. 106, 10516–10521 (2009).

    ADS  Google Scholar 

  54. Vozzi, C. et al. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett. 32, 2957–2959 (2007).

    ADS  Google Scholar 

  55. Gu, X. et al. Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength. Opt. Express 17, 62–69 (2009).

    ADS  Google Scholar 

  56. Mücke, O. D. et al. Self-compression of millijoule 1.5 μm pulses. Opt. Lett. 34, 2498–2500 (2009).

    ADS  Google Scholar 

  57. Andriukaitis, G. et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett. 36, 2755–2757 (2011).

    ADS  Google Scholar 

  58. Schmidt, B. E. et al. CEP stable 1.6 cycle laser pulses at 1.8 μm. Opt. Express 19, 6858–6864 (2011).

    ADS  Google Scholar 

  59. Silva, F., Bates, P. K., Esteban-Martin, A., Ebrahim-Zadeh, M. & Biegert, J. High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier. Opt. Lett. 37, 933–935 (2012).

    ADS  Google Scholar 

  60. Shiner, A. D. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

    ADS  Google Scholar 

  61. Ishii, N. et al. Generation of soft x-ray and water window harmonics using a few-cycle, phase-locked, optical parametric chirped-pulse amplifier. Opt. Lett. 37, 97–99 (2012).

    ADS  Google Scholar 

  62. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401(R) (2005).

    ADS  Google Scholar 

  63. Chini, M., Gilbertson, S., Khan, S. D. & Chang, Z. Characterizing ultrabroadband attosecond lasers. Opt. Express 18, 13006–13016 (2010).

    ADS  Google Scholar 

  64. Gagnon, J., Goulielmakis, E. & Yakovlev, V. S. The accurate FROG characterization of attosecond pulses from streaking measurements. Appl. Phys. B 92, 25–32 (2008).

    ADS  Google Scholar 

  65. Wang, H. et al. Practical issues of retrieving isolated attosecond pulses. J. Phys. B 42, 134007 (2009).

    ADS  Google Scholar 

  66. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    ADS  Google Scholar 

  67. Chen, C.-C., Chen, Y.-S., Huang, C.-B., Chen, M.-C. & Yang, S.-D. Noniterative data inversion of phase retrieval by omega oscillating filtering for optical arbitrary waveform measurement. Opt. Lett. 38, 2011–2013 (2013).

    ADS  Google Scholar 

  68. Laurent, G., Cao, W., Ben-Itzhak, I. & Cocke, C. L. Attosecond pulse characterization. Opt. Express 21, 16914–16927 (2013).

    ADS  Google Scholar 

  69. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    ADS  Google Scholar 

  70. Bertrand, J. B. et al. Ultrahigh-order wave mixing in noncollinear high harmonic generation. Phys. Rev. Lett. 106, 023001 (2011).

    ADS  Google Scholar 

  71. Dahlström, J. M. et al. Atomic and macroscopic measurements of attosecond pulse trains. Phys. Rev. A 80, 033836 (2009).

    ADS  Google Scholar 

  72. Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Phys. 9, 159–163 (2013).

    ADS  Google Scholar 

  73. Kohler, M. C., Keitel, C. H. & Hatsagortsyan, K. Z. Attochirp-free high-order harmonic generation. Opt. Express 19, 4411–4420 (2011).

    ADS  Google Scholar 

  74. Serrat, C. Broadband spectral-phase control in high-order harmonic generation. Phys. Rev. A 87, 013825 (2013).

    ADS  Google Scholar 

  75. Kim, K. T., Kim, C. M., Baik, M.-G., Umesh, G. & Nam, C. H. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805(R) (2004).

    ADS  Google Scholar 

  76. Ko, D. H., Kim, K. T. & Nam, C. H. Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses. J. Phys. B 45, 074015 (2012).

    ADS  Google Scholar 

  77. Morlens, A.-S. et al. Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors. Opt. Lett. 30, 1554–1556 (2005).

    ADS  Google Scholar 

  78. Morlens, A.-S. et al. Design and characterization of extreme-ultraviolet broadband mirrors for attosecond science. Opt. Lett. 31, 1558–1560 (2006).

    ADS  Google Scholar 

  79. Hofstetter, M. et al. Attosecond dispersion control by extreme ultraviolet multilayer mirrors. Opt. Express 19, 1767–1776 (2011).

    ADS  Google Scholar 

  80. Guggenmos, A. et al. Aperiodic CrSc multilayer mirrors for attosecond water window pulses. Opt. Express 21, 21728–21740 (2013).

    ADS  Google Scholar 

  81. Bourassin-Bouchet, C. et al. Shaping of single-cycle sub-50-attosecond pulses with multilayer mirrors. New J. Phys. 14, 023040 (2012).

    ADS  Google Scholar 

  82. Mauritsson, J. et al. Attosecond electron spectroscopy using a novel interferometric pump-probe technique. Phys. Rev. Lett. 105, 053001 (2010).

    ADS  Google Scholar 

  83. Choi, N. N., Jiang, T. F., Morishita, T., Lee, M.-H. & Lin, C. D. Theory of probing attosecond electron wave packets via two-path interference of angle-resolved photoelectrons. Phys. Rev. A 82, 013409 (2010).

    ADS  Google Scholar 

  84. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    ADS  Google Scholar 

  85. Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    ADS  Google Scholar 

  86. Klünder, K. et al. Reconstruction of attosecond electron wave packets using quantum state holography. Phys. Rev. A 88, 033404 (2013).

    ADS  Google Scholar 

  87. Chen, S. et al. Light-induced states in attosecond transient absorption spectra of laser-dressed helium. Phys. Rev. A 86, 063408 (2012).

    ADS  Google Scholar 

  88. Chini, M. et al. Sub-cycle oscillations in virtual states brought to light. Sci. Rep. 3, 1105 (2013).

    Google Scholar 

  89. Gallmann, L. et al. Resolving intra-atomic electron dynamics with attosecond transient absorption spectroscopy. Mol. Phys. 111, 2243–2250 (2013).

    ADS  Google Scholar 

  90. Chen, S., Wu, M., Gaarde, M. B. & Schafer, K. J. Quantum interference in attosecond transient absorption of laser-dressed helium atoms. Phys. Rev. A 87, 033408 (2013).

    ADS  Google Scholar 

  91. Chini, M. et al. Subcycle ac Stark shift of helium excited states probed with isolated attosecond pulses. Phys. Rev. Lett. 109, 073601 (2012).

    ADS  Google Scholar 

  92. Bell, M. J., Beck, A. R., Mashiko, H., Neumark, D. M. & Leone, S. R. Intensity dependence of light-induced states in transient absorption of laser-dressed helium measured with isolated attosecond pulses. J. Mod. Opt. 60, 1506–1516 (2013).

    ADS  Google Scholar 

  93. Wang, X. et al. Subcycle laser control and quantum interferences in attosecond photoabsorption of neon. Phys. Rev. A 87, 063413 (2013).

    ADS  Google Scholar 

  94. Ott, C. et al. Quantum interferometry and correlated two-electron wave-packet observation in helium. Preprint at http://arXiv.org/abs/1205.0519 (2012).

  95. Sansone, G. et al. Attosecond absorption spectroscopy in molecules. Paper QF2C.1 in CLEO-QELS – Fundamental Science (OSA, 2013).

    Google Scholar 

  96. Ott, C. et al. Lorentz meets fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    ADS  Google Scholar 

  97. Moskalenko, A. S., Pavlyukh, Y. & Berakdar, J. Attosecond tracking of light absorption and refraction in fullerenes. Phys. Rev. A 86, 013202 (2012).

    ADS  Google Scholar 

  98. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    ADS  Google Scholar 

  99. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Google Scholar 

  100. Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the DARPA PULSE program by a grant from AMRDEC, the National Science Foundation and the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenghu Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chini, M., Zhao, K. & Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photon 8, 178–186 (2014). https://doi.org/10.1038/nphoton.2013.362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing