Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A quantum memory for orbital angular momentum photonic qubits

Abstract

Among the optical degrees of freedom, the orbital angular momentum of light1 provides unique properties2, including mechanical torque action, which has applications for light manipulation3, enhanced sensitivity in imaging techniques4 and potential high-density information coding for optical communication systems5. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies6,7. In pursuing this endeavour, we demonstrate here the implementation of a quantum memory8 for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand using a dynamic electromagnetically induced transparency protocol. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks9 exploring the promises of orbital angular momentum of photons for quantum information applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for quantum storage and analysis of OAM qubits.
Figure 2: Experimental fringe measurements and phase analysis.
Figure 3: Quantum tomography of the retrieved OAM qubits.
Figure 4: Average fidelities of the retrieved qubits and quantum storage.

References

  1. Allen, L., Barnett, S. M. & Padgett, M. J. (eds) Optical Angular Momentum (IOP Publishing, 2003).

    Book  Google Scholar 

  2. Torres, J. P. & Torner, L. Twisted Photons: Applications of Light With Orbital Angular Momentum (Wiley-VCH, 2011).

    Book  Google Scholar 

  3. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  4. Uribe-Patarroyo, N., Fraine, A., Simon, D. S., Minaeva, O. & Sergienko, A. V. Object identification using correlated orbital angular momentum states. Phys. Rev. Lett. 110, 043601 (2013).

    Article  ADS  Google Scholar 

  5. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

    Article  ADS  Google Scholar 

  6. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  7. Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).

    Article  ADS  Google Scholar 

  8. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  9. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  10. Gröblacher, S., Jennewein, T., Vaziris, A., Weihs, G. & Zeilinger, A. Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006).

    Article  ADS  Google Scholar 

  11. Langford, N. K. et al. Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601 (2004).

    Article  ADS  Google Scholar 

  12. Molina-Terriza, G., Vaziri, A., Ursin, R. & Zeilinger, A. Experimental quantum coin tossing. Phys. Rev. Lett. 94, 040501 (2005).

    Article  ADS  Google Scholar 

  13. Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nature Phys. 7, 677–680 (2011).

    Article  ADS  Google Scholar 

  14. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    Article  ADS  Google Scholar 

  15. Inoue, R. et al. Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon. Phys. Rev. A 74, 053809 (2006).

    Article  ADS  Google Scholar 

  16. Pugatch, R., Shuker, M., Firstenberg, O., Ron, A. & Davidson, N. Topological stability of optical vortices. Phys. Rev. Lett. 98, 203601 (2007).

    Article  ADS  Google Scholar 

  17. Moretti, D., Felinto, D. & Tabosa, J. W. R. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825 (2009).

    Article  ADS  Google Scholar 

  18. Veissier, L. et al. Reversible optical memory for twisted photons. Opt. Lett. 38, 712–714 (2013).

    Article  ADS  Google Scholar 

  19. Ding, D.-S., Zhou, Z.-Y., Shi, B.-S. & Guo, G.-G. Single-photon level quantum image memory based on cold atomic ensembles. Nature Commun. 4, 2527 10.1038/ncomms3527(2013).

    Article  ADS  Google Scholar 

  20. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  ADS  Google Scholar 

  21. Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    Article  ADS  Google Scholar 

  22. Gündoğan, M., Ledingham, P. M., Almasi, A., Cristiani, M. & de Riedmatten, H. Quantum storage of a photonic polarization qubit in a solid. Phys. Rev. Lett. 108, 190504 (2012).

    Article  ADS  Google Scholar 

  23. Clausen, C., Bussières, F., Afzelius, M. & Gisin, N. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett. 108, 190503 (2012).

    Article  ADS  Google Scholar 

  24. Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F. & Guo, G.-C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012)

    Article  ADS  Google Scholar 

  25. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  26. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  27. Vaziri, A., Weihs, G. & Zeilinger, A. Superpositions of the orbital angular momentum for applications in quantum experiments. J. Opt. B 4, S47 (2002).

    Article  ADS  Google Scholar 

  28. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  29. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  30. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  31. Dudin, Y. O., Li, L. & Kuzmich, A. Light storage on the time scale of a minute. Phys. Rev. A 87, 031801(R) (2013).

    Article  ADS  Google Scholar 

  32. Grodecka-Grad, A., Zeuthen, E. & Sørensen, A. S. High-capacity spatial multimode quantum memories based on atomic ensembles. Phys. Rev. Lett. 109, 133601 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Zeilinger and R. Fickler for providing fork holograms and M.J. Padgett and D. Tasca for their assistance with the SLM. The authors also thank M. Scherman and S. Burks for their valuable contributions in the early stage of the experiment. This work is supported by the ERA-Net CHIST-ERA (QScale), the ERA-Net.RUS (Nanoquint), the Institut Francilien de Recherche sur les Atomes Froids (IFRAF) and by the European Research Council (ERC; starting grant HybridNet). A.N. acknowledges support from the Direction Générale de l'Armement (DGA). J.L. is a member of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

L.G., L.V., E.G. and J.L. planned the initial experimental set-up for light–matter interfacing, which was constructed by L.G., L.V. and J.L. All authors contributed to the OAM experiment. A.N., L.V. and D.M. designed the generation and characterization system and performed the measurements and data analysis under the supervision of J.L. All authors contributed to discussing the results. J.L., A.N., L.V. and D.M. wrote the manuscript.

Corresponding author

Correspondence to J. Laurat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolas, A., Veissier, L., Giner, L. et al. A quantum memory for orbital angular momentum photonic qubits. Nature Photon 8, 234–238 (2014). https://doi.org/10.1038/nphoton.2013.355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing