Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mapping nanoscale light fields

Abstract

The control of light fields on subwavelength scales in nanophotonic structures has become ubiquitous, driven by both curiosity and a multitude of applications in fields ranging from biosensing to quantum optics. Mapping these fields in detail is crucial, as theoretical modelling is far from trivial and highly dependent on nanoscale geometry. Recent developments of nanoscale field mapping, particularly with near-field microscopy, have not only led to a vastly increased resolution, but have also resulted in increased functionality. The phase and amplitude of different vector components of both the electric and magnetic fields are now accessible, as is the ultrafast temporal or spectral evolution of propagating pulses in nanostructures. In this Review we assess the current state-of-the-art of subwavelength light mapping, highlighting the new science and nanostructures that have subsequently become accessible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Near-field scanning optical microscopy.
Figure 2: Vector light field mappings with NSOMs.
Figure 3: Examples of time- and frequency-resolved near-field mappings.
Figure 4: Electromagnetic near-field maps.

Similar content being viewed by others

References

  1. Gay, G. et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nature Phys. 2, 262–267 (2006).

    ADS  Google Scholar 

  2. Lalanne, P. & Hugonin, J. P. Interaction between optical nano-objects at metallo-dielectric interfaces. Nature Phys. 2, 551–556 (2006).

    ADS  Google Scholar 

  3. Bozhevolnyi, S. I. et al. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics. Phys. Rev. B 66, 235204 (2002).

    ADS  Google Scholar 

  4. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    ADS  Google Scholar 

  5. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photon. 3, 287–291 (2009).

    ADS  Google Scholar 

  6. Dorfmüller, J. et al. Near-field dynamics of optical Yagi-Uda nanoantennas. Nano Lett. 11, 2819–2824 (2011).

    ADS  Google Scholar 

  7. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    ADS  Google Scholar 

  8. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    ADS  Google Scholar 

  9. López-Tejeira, F. et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nature Phys. 3, 324–328 (2007).

    ADS  Google Scholar 

  10. Minovich, A. et al. Generation and near-field imaging of Airy surface plasmons. Phys. Rev. Lett. 107, 116802 (2011).

    ADS  Google Scholar 

  11. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    Article  ADS  Google Scholar 

  12. Yoon, I. et al. Profiling the evanescent field of nanofiber waveguides using self-assembled polymer coatings. Nanoscale 5, 552–555 (2013).

    ADS  Google Scholar 

  13. Sundaramurthy, A. et al. Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006).

    ADS  Google Scholar 

  14. Paesler, M. A. & Moyer, P. J. Near-field Optics: Theory, Instrumentation, and Applications (Wiley, 1996).

    Google Scholar 

  15. Hecht, B. et al. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000).

    ADS  Google Scholar 

  16. Dereux, A., Girard, C. & Weeber, J.-C. Theoretical principles of near-field optical microscopies and spectroscopies. J. Chem. Phys. 112, 7775–7789 (2000).

    ADS  Google Scholar 

  17. Kawata, S., Ohtsu, M. & Irie, M. Nano-optics (Springer, 2002).

    Google Scholar 

  18. Courjon, D. Near-field Microscopy and Near-field Optics (World Scientific, 2003).

    Google Scholar 

  19. Zayats, A. V. & Richards, D. Nano-optics and Near-field Optical Microscopy (Artech House, 2008).

    Google Scholar 

  20. Vogelgesang, R. & Dmitriev, A. Real-space imaging of nanoplasmonic resonances. Analyst 135, 1175–1181 (2010).

    ADS  Google Scholar 

  21. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2012).

    Google Scholar 

  22. Novotny, L. in Progress in Optics Vol. 50 (ed. Wolf, E) Ch. 5, 137–184 (Elsevier, 2007).

    Google Scholar 

  23. García-Etxarri, A., Romero, I., de Abajo, F. J. G., Hillenbrand, R. & Aizpurua, J. Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Phys. Rev. B 79, 125439 (2009).

    ADS  Google Scholar 

  24. Sun, J., Carney, P. S. & Schotland, J. C. Strong tip effects in near-field scanning optical tomography. J. Appl. Phys. 102, 103103 (2007).

    ADS  Google Scholar 

  25. Koenderink, A. F., Kafesaki, M., Buchler, B. C. & Sandoghdar, V. Controlling the resonance of a photonic crystal microcavity by a near-field probe. Phys. Rev. Lett. 95, 153904 (2005).

    ADS  Google Scholar 

  26. Lalouat, L. et al. Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity. Phys. Rev. B 76, 041102(R) (2007).

    ADS  Google Scholar 

  27. Hecht, B., Bielefeldt, H., Inouye, Y., Pohl, D. W. & Novotny, L. Facts and artifacts in near-field optical microscopy. J. Appl. Phys. 81, 2492–2498 (1997).

    ADS  Google Scholar 

  28. Veerman, J. A., Otter, A. M., Kuipers, L. & van Hulst, N. F. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. Lett. 72, 3115–3117 (1998).

    ADS  Google Scholar 

  29. Stökle, R. et al. High-quality near-field optical probes by tube etching. Appl. Phys. Lett. 75, 160–162 (1999).

    ADS  Google Scholar 

  30. Bek, A., Vogelgesang, R. & Kern, K. Apertureless scanning near field optical microscope with sub-10 nm resolution. Rev. Sci. Instrum. 77, 043703 (2006).

    ADS  Google Scholar 

  31. Fleischer, M. et al. Gold nanocone near-field scanning optical microscopy probes. ACS Nano 5, 2570–2579 (2011).

    Google Scholar 

  32. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    ADS  Google Scholar 

  33. Wang, L. & Xu, X. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl. Phys. Lett. 90, 261105 (2007).

    ADS  Google Scholar 

  34. Jones, A. C. et al. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano Lett. 9, 2553–2558 (2009).

    ADS  Google Scholar 

  35. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    ADS  Google Scholar 

  36. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Google Scholar 

  37. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Google Scholar 

  38. Neumann, L. et al. Extraordinary optical transmission brightens near-field fiber probe. Nano Lett. 11, 355–360 (2011).

    ADS  Google Scholar 

  39. Bao, W. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338, 1317–1321 (2012).

    ADS  Google Scholar 

  40. Burresi, M. et al. Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009).

    ADS  Google Scholar 

  41. Vo, T.-P. et al. Near-field probing of slow Bloch modes on photonic crystals with a nanoantenna. Opt. Express 20, 4124–4135 (2012).

    ADS  Google Scholar 

  42. Denkova, D. et al. Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano 7, 3168–3176 (2013).

    Google Scholar 

  43. Koglin, J., Fischer, U. C. & Fuchs, H. Material contrast in scanning near-field optical microscopy at1–10 nm resolution. Phys. Rev. B 55, 7977 (1997).

    ADS  Google Scholar 

  44. Rotenberg, N. et al. Plasmon scattering from single subwavelength holes. Phys. Rev. Lett. 108, 127402 (2012).

    ADS  Google Scholar 

  45. Du, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk'yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nature Commun. 4, 1527 (2012).

    Google Scholar 

  46. Porto, J. A., Carminati, R. C. & Greffet, J-J. Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy. J. Appl. Phys. 88, 4845–4850 (2000).

    ADS  Google Scholar 

  47. Esslinger, M. & Vogelgesang, R. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes. ACS Nano 6, 8173–8182 (2012).

    Google Scholar 

  48. le Feber, B., Rotenberg, N., Beggs, D. M. & Kuipers, L. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nature Photon. 8, 43–46 (2014).

    ADS  Google Scholar 

  49. M. L. M. Balistreri, L. K., J. P. Korterik & van Hulst, N. F. Local observations of phase singularities in optical fields in waveguide structures. Phys. Rev. Lett. 85, 294–297 (2000).

    ADS  Google Scholar 

  50. Nesci, A., Dändliker, R. & Herzig, H. P. Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope. Opt. Lett. 26, 208–210 (2001).

    ADS  Google Scholar 

  51. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS  Google Scholar 

  52. Zentgraf, T. et al. Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials. Opt. Lett. 33, 848–850 (2008).

    ADS  Google Scholar 

  53. Deutsch, B., Hillenbrand, R. & Novotny, L. Visualizing the optical interaction tensor of a gold nanoparticle pair. Nano Lett. 10, 652–656 (2010).

    ADS  Google Scholar 

  54. Alonso-Gonzalez, P. et al. Real-space mapping of Fano interference in plasmonic metamolecules. Nano Lett. 11, 3922–3926 (2011).

    ADS  Google Scholar 

  55. Verhagen, E., Spasenović, M., Polman, A. & Kuipers, L. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2009).

    ADS  Google Scholar 

  56. Burresi, M. et al. Negative-index metamaterials: looking into the unit cell. Nano Lett. 10, 2480–2483 (2010).

    ADS  Google Scholar 

  57. Gersen, H. et al. Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides. Phys. Rev. Lett. 94, 123901 (2005).

    ADS  Google Scholar 

  58. Ayache, M., Nezhad, M. P., Zamek, S., Abashin, M. & Fainman, Y. Near-field measurement of amplitude and phase in silicon waveguides with liquid cladding. Opt. Lett. 36, 1869–1871 (2011).

    ADS  Google Scholar 

  59. Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009).

    ADS  Google Scholar 

  60. Veerman, J. A., Garcia-Parajo, M. F., Kuipers, L. & van Hulst, N. F. Single molecule mapping of the optical field distribution of probes for near-field microscopy. J. Microsc. 194, 477–482 (1999).

    Google Scholar 

  61. Sick, B., Hecht, B., Wild, U. P. & Novotny, L. Probing confined fields with single molecules and vice versa. J. Microsc. 202, 365–373 (2001).

    MathSciNet  Google Scholar 

  62. Bauer, T., Orlov, S., Peschel, U., Banzer, P. & Leuchs, G. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nature Photon. 8, 23–27 (2014).

    ADS  Google Scholar 

  63. Chicanne, C. et al. Imaging the local density of states of optical corrals. Phys. Rev. Lett. 88, 097402 (2002).

    ADS  Google Scholar 

  64. Lee, K. G. et al. Vector field microscopic imaging of light. Nature Photon. 1, 53–56 (2007).

    ADS  Google Scholar 

  65. Schnell, M., García-Etxarri, A., Alkorta, J., Aizpurua, J. & Hillenbrand, R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524–3528 (2010).

    ADS  Google Scholar 

  66. Rotenberg, N. et al. Magnetic and electric response of single subwavelength holes. Phys. Rev. B 88, 241408(R) (2013).

    ADS  Google Scholar 

  67. Uebel, P., Schmidt, M. A., Lee, H. W. & Russell, P. S. J. Polarisation-resolved near-field mapping of a coupled gold nanowire array. Opt. Express 20, 28409–28417 (2012).

    ADS  Google Scholar 

  68. Balistreri, M. L. M., Gersen, H., Korterik, J. P., Kuipers, L. & van Hulst, N. F. Tracking femtosecond laser pulses in space and time. Science 294, 1080–1082 (2001).

    ADS  Google Scholar 

  69. Sandtke, M. & Kuipers, L. Slow guided surface plasmons at telecom frequencies. Nature Photon. 1, 573–576 (2007).

    ADS  Google Scholar 

  70. Engelen, R. J. P. et al. Ultrafast evolution of photonic eigenstates in k-space. Nature Phys. 3, 401–405 (2007).

    ADS  Google Scholar 

  71. Xu, X. G. & Raschke, M. B. Near-field infrared vibrational dynamics and tip-enhanced decoherence. Nano Lett. 13, 1588–1595 (2013).

    ADS  Google Scholar 

  72. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nature Mater. 10, 352–356 (2011).

    ADS  Google Scholar 

  73. Jones, A. C. & Raschke, M. B. Thermal infrared near-field spectroscopy. Nano Lett. 12, 1475–1481 (2012).

    ADS  Google Scholar 

  74. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nature Commun. 4, 2890 (2013).

    ADS  Google Scholar 

  75. Westermeier, C. et al. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging. Nature Commun. 5, 4101 (2014).

    ADS  Google Scholar 

  76. Dellinger, J. et al. Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color. Appl. Phys. Lett. 101, 141108 (2012).

    ADS  Google Scholar 

  77. Wulf, M., Beggs, D. M., Rotenberg, N. & Kuipers, L. Unravelling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements. Nano Lett. 13, 5858–5865 (2013).

    ADS  Google Scholar 

  78. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    ADS  Google Scholar 

  79. Denkova, D., Verellen, N., Silhanek, A. V., van Dorpe, P. & Moshchalkov, V. V. Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity. Small 10, 1959–1966 (2014).

    Google Scholar 

  80. le Feber, B., Rotenberg, N., van Oosten, D. & Kuipers, L. Modal symmetries at the nanoscale: a route towards a complete vectorial near-field mapping. Opt. Lett. 39, 2802–2805 (2014).

    ADS  Google Scholar 

  81. Burresi, M. et al. Magnetic light–matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010).

    ADS  Google Scholar 

  82. Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010).

    ADS  Google Scholar 

  83. Spasenović, M., Beggs, D. M., Lalanne, P., Krauss, T. F. & Kuipers, L. Measuring the spatial extent of individual localized photonic states. Phys. Rev. B 86, 155153 (2012).

    ADS  Google Scholar 

  84. Huisman, S. R. et al. Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide. Phys. Rev. B 86, 155154 (2012).

    ADS  Google Scholar 

  85. Kihm, H. W. et al. Bethe-hole polarization analyser for the magnetic vector of light. Nature Commun. 2, 451 (2011).

    ADS  Google Scholar 

  86. Kihm, H. W. et al. Optical magnetic field mapping using a subwavelength aperture. Opt. Express 21, 5625–5633 (2013).

    ADS  Google Scholar 

  87. Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).

    ADS  Google Scholar 

  88. Grosjean, T. et al. Full vectorial imaging of electromagnetic light at subwavelength scale. Opt. Express 18, 5809–5824 (2010).

    ADS  Google Scholar 

  89. Yang, H. U., Hebestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope. Rev. Sci. Instrum. 84, 023701 (2013).

    ADS  Google Scholar 

  90. Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

    ADS  Google Scholar 

  91. le Feber, B., Rotenberg, N. & Kuipers, L. A scalable interface between solid-state and flying qubits: observations of near-unity dipole helicity to photon pathway coupling. Preprint at http://arxiv.org/abs/1406.7741 (2014).

  92. Söllner, I., Mahmoodian, S., Javadi, A. & Lodahl, P. A chiral spin–photon interface for scalable on-chip quantum-information processing. Preprint at http://arxiv.org/abs/1406.4295 (2014).

  93. Young, A. B. et al. Polarization engineering in photonic crystal waveguides for spin–photon entanglers. Preprint at http://arxiv.org/abs/1406.0714 (2014).

  94. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    ADS  Google Scholar 

  95. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    ADS  Google Scholar 

  96. Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13, 1065–1072 (2013).

    ADS  Google Scholar 

  97. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    ADS  Google Scholar 

  98. Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011).

    ADS  Google Scholar 

  99. Okamoto, K. Fundamentals of Optical Waveguides (Academic, 2005).

    Google Scholar 

  100. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    ADS  Google Scholar 

  101. Johnson, S. G. & Joannopoulos, J. D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express 8, 173–190 (2001).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank B. le Feber for discussions and help in the preparation of this manuscript, and A. de Hoogh for help with the figures. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). This work is supported by the EU FET project “SPANGL4Q” and was also funded by ERC Advanced Investigator Grant (no. 240438-CONSTANS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kuipers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotenberg, N., Kuipers, L. Mapping nanoscale light fields. Nature Photon 8, 919–926 (2014). https://doi.org/10.1038/nphoton.2014.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing