Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A generalization of the entropy power inequality to bosonic quantum systems

Abstract

In most communication schemes, information is transmitted via travelling modes of electromagnetic radiation. These modes are unavoidably subject to environmental noise along any physical transmission medium, and the quality of the communication channel strongly depends on the minimum noise achievable at the output. For classical signals, such noise can be rigorously quantified in terms of the associated Shannon entropy and it is subject to a fundamental lower bound called the entropy power inequality. However, electromagnetic fields are quantum mechanical systems, so the quantum nature of the information carrier cannot be neglected—especially in low-intensity signals—and many important results derived within classical information theory require non-trivial extensions to the quantum regime. Here, we prove one possible generalization of the entropy power inequality to quantum bosonic systems. The impact of this inequality in quantum information theory is potentially large and some relevant implications are considered in this work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphical representation of coherent mixing of two inputs A and B.
Figure 2: Entropy power versus photon number inequality.
Figure 3: Capacity region (expressed in nats per channel uses) for a broadcasting channel12,13.

Similar content being viewed by others

References

  1. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  MathSciNet  Google Scholar 

  2. Dembo, A., Cover, T. & Thomas, J. Information theoretic inequalities. IEEE Trans. Inf. Theory 37, 1501–1518 (1991).

    Article  MathSciNet  Google Scholar 

  3. Stam, A. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2, 101–112 (1959).

    Article  MathSciNet  Google Scholar 

  4. Blachman, N. The convolution inequality for entropy powers. IEEE Trans. Inf. Theory 11, 267–271 (1965).

    Article  MathSciNet  Google Scholar 

  5. Verdú, S. & Guo, D. A simple proof of the entropy-power inequality. IEEE Trans. Inf. Theory 52, 2165–2166 (2006).

    Article  MathSciNet  Google Scholar 

  6. Rioul, O. Information theoretic proofs of entropy power inequalities. IEEE Trans. Inf. Theory 57, 33–55 (2011).

    Article  MathSciNet  Google Scholar 

  7. Guo, D., Shamai, S. & Verdú, S. Proof of entropy power inequalities via MMSE. In Proceedings of Information Theory 2006, IEEE International Symposium on Information Theory 1011–1015 (2006).

  8. Bergmans, P. A simple converse for broadcast channels with additive white Gaussian noise. IEEE Trans. Inf. Theory 20, 279–280 (1974).

    Article  MathSciNet  Google Scholar 

  9. Leung-Yan-Cheong, S. & Hellman, M. The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24, 451–456 (1978).

    Article  MathSciNet  Google Scholar 

  10. Guha, S., Erkmen, B. I. & Shapiro, J. H. The entropy photon-number inequality and its consequences. Information Theory and Applications Workshop 128–130 (2008).

  11. Guha, S., Shapiro, J. & Erkmen, B. Capacity of the bosonic wiretap channel and the entropy photon-number inequality. In Proceedings of Information Theory 2008, IEEE International Symposium on Information Theory 91–95 (2008).

  12. Guha, S. & Shapiro, J. Classical information capacity of the bosonic broadcast channel. In Proceedings of Information Theory 2007, IEEE International Symposium on Information Theory 1896–1900 (2007).

  13. Guha, S., Shapiro, J. H. & Erkmen, B. I. Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture. Phys. Rev. A 76, 032303 (2007).

    Article  ADS  Google Scholar 

  14. Giovannetti, V., Holevo, A. S. & García-Patrón, R. A solution of the Gaussian optimizer conjecture. Preprint at http://lanl.arxiv.org/abs/1312.2251 (2013).

  15. Giovannetti, V., García-Patrón, R., Cerf, N. J. & Holevo, A. S. Ultimate communication capacity of quantum optical channels by solving the Gaussian minimum-entropy conjecture. Preprint at http://lanl.arxiv.org/abs/1312.6225 (2013).

  16. Giovannetti, V., Guha, S., Lloyd, S., Maccone, L. & Shapiro, J. H. Minimum output entropy of bosonic channels: a conjecture. Phys. Rev. A 70, 032315 (2004).

    Article  ADS  Google Scholar 

  17. König, R. & Smith, G. The entropy power inequality for quantum systems. IEEE Trans. Inf. Theory 60, 1536–1548 (2014).

    Article  MathSciNet  Google Scholar 

  18. König, R. & Smith, G. Limits on classical communication from quantum entropy power inequalities. Nature Photon. 7, 142–146 (2013).

    Article  ADS  Google Scholar 

  19. Barron, A. R. Entropy and the central limit theorem. Ann. Prob. 14, 336–342 (1986).

    Article  MathSciNet  Google Scholar 

  20. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. Weedbroock, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article  ADS  Google Scholar 

  22. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, 1994).

    Book  Google Scholar 

  23. Holevo, A. S. Quantum Systems, Channels, Information: A Mathematical Introduction (Walter de Gruyter, 2012).

    Book  Google Scholar 

  24. Kagan, A. & Yu, T. Some inequalities related to the Stam inequality. Appl. Math. 53, 195–205 (2008).

    Article  MathSciNet  Google Scholar 

  25. Mari, A., Giovannetti, V. & Holevo, A. S. Quantum state majorization at the output of bosonic Gaussian channels. Nature Commun. 5, 3826 (2014).

    Article  ADS  Google Scholar 

  26. Caves, C. M. & Drummond, P. B. Quantum limits on bosonic communication rates. Rev. Mod. Phys. 66, 481–537 (1994).

    Article  ADS  Google Scholar 

  27. Holevo, A. S. & Werner, R. F. Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63, 032312 (2001).

    Article  ADS  Google Scholar 

  28. Giedke, G., Wolf, M. M., Krüger, O., Werner, R. F. & Cirac, J. I. Entanglement of formation for symmetric Gaussian states. Phys. Rev. Lett. 91, 107901 (2003).

    Article  ADS  Google Scholar 

  29. Modi, K., Brodutch, A., Cable, H., Paterek, T. & Vedral, V. The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012).

    Article  ADS  Google Scholar 

  30. Pirandola, S., Cerf, N. J., Braunstein, S. L. & Lloyd, S. Optimality of Gaussian discord. Preprint at http://lanl.arxiv.org/abs/1309.2215 (2013).

  31. Bardhan, B. R., García-Patrón, R., Wilde, M. M. & Winter, A. Strong converse for the classical capacity of optical quantum communication channels. Preprint at http://lanl.arxiv.org/abs/1401.4161 (2014).

  32. Wolf, M. M., Giedke, G. & Cirac, J. I. Extremality of Gaussian quantum states. Phys. Rev. Lett. 96, 080502 (2006).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank L. Ambrosio, S. Di Marino and A.S. Holevo for comments and discussions. A.M. acknowledges support from the Progetto Giovani Ricercatori 2013 of Scuola Normale Superiore. This work is partially supported by the EU Collaborative Project TherMiQ (grant agreement 618074).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the research work and writing of the manuscript.

Corresponding author

Correspondence to V. Giovannetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Palma, G., Mari, A. & Giovannetti, V. A generalization of the entropy power inequality to bosonic quantum systems. Nature Photon 8, 958–964 (2014). https://doi.org/10.1038/nphoton.2014.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing