Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Instabilities, breathers and rogue waves in optics

Abstract

Optical rogue waves are rare, extreme fluctuations in the value of an optical field. The term 'optical rogue wave' was first used in the context of an analogy between pulse propagation in an optical fibre and wave group propagation on deep water, but has since been generalized to describe many other processes in optics. This Review provides an overview of the field, concentrating primarily on propagation in optical fibre systems that exhibit nonlinear breather and soliton dynamics, but also discussing other optical systems in which extreme events have been reported. Although statistical features such as long-tailed probability distributions are often considered to be the defining feature of rogue waves, we emphasize the underlying physical processes that drive the appearance of extreme optical structures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SFB solutions of the NLSE.
Figure 2: Numerical simulation showing signatures of analytic NLSE solutions in chaotic MI.
Figure 3: Selection of experimental and numerical results for SC rogue solitons.
Figure 4: Dissipative rogue waves.
Figure 5: Rogue waves in the transverse spatial plane of optical beams.

Similar content being viewed by others

References

  1. Kharif, C. & Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B 22, 603–634 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. Osborne, A. R. Nonlinear Ocean Waves and the Inverse Scattering Transform (Academic Press, 2010).

    MATH  Google Scholar 

  3. Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  4. Goldie, C. M. & Klüppelberg, C. in A Practical Guide to Heavy Tails: Statistical Techniques and Applications (eds Adler, R. L., Feldman, R. & Taqqu, M. S.) 435–459 (Birkhäuser, 1998).

    Google Scholar 

  5. Akhmediev, N., Dudley, J. M., Solli, D. R. & Turitsyn, S. K. Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013).

    Article  ADS  Google Scholar 

  6. Onorato, M., Residori, S., Bortolozzo, U., Montina, A. & Arecchi, F. T. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  7. Goodman, J. W. Statistical Optics (John Wiley & Sons, 1985).

    Google Scholar 

  8. Dudley, J. M., Genty, G. & Eggleton, B. J. Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express 16, 3644–3651 (2008).

    Article  ADS  Google Scholar 

  9. Kasparian, J., Bejot, P., Wolf, J. P. & Dudley, J. M. Optical rogue wave statistics in laser filamentation. Opt. Express 17, 12070–12075 (2009).

    Article  ADS  Google Scholar 

  10. Demircan, A. et al. Rogue events in the group velocity horizon. Sci. Rep. 2, 850 (2012).

    Article  Google Scholar 

  11. Sverdrup, H. U. & Munk, W. H. Wind, sea and swell. Theory of relations for forecasting. U. S. Navy Hydrographic Office Pub. 601 (1947).

    Google Scholar 

  12. Erkintalo, M., Genty, G. & Dudley, J. M. On the statistical interpretation of optical rogue waves. Eur. Phys. J. Spec. Top. 185, 135–144 (2010).

    Article  Google Scholar 

  13. Zaviyalov, A., Egorov, O., Iliew, R. & Lederer, F. Rogue waves in mode-locked fiber lasers. Phys. Rev. A 85, 013828 (2012).

    Article  ADS  Google Scholar 

  14. Lecaplain, C., Grelu, P., Soto-Crespo, J. M. & Akhmediev, N. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012).

    Article  ADS  Google Scholar 

  15. Demircan, A. et al. Rogue wave formation by accelerated solitons at an optical event horizon. Appl. Phys. B 115, 343–354 (2013).

    Article  ADS  Google Scholar 

  16. Zakharov, V. E. & Ostrovsky, L. A. Modulation instability: The beginning. Physica D 238, 540–548 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kelleher, E. J. R., Travers, J. C., Popov, S. V. & Taylor, J. R. Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability. J. Opt. Soc. Am. B 29, 502–512 (2012).

    Article  ADS  Google Scholar 

  18. Dudley, J. M., Genty, G., Dias, F., Kibler, B. & Akhmediev, N. Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009).

    Article  ADS  Google Scholar 

  19. Dyachenko, A. I. & Zakharov, V. E. Modulation instability of Stokes wave → freak wave. JETP Lett. 81, 255–259 (2005).

    Article  ADS  Google Scholar 

  20. Dysthe, K. B. & Trulsen, K. Note on breather type solutions of the NLS as models for freak-waves. Phys. Scripta T82, 48–52 (1999).

    Article  ADS  Google Scholar 

  21. Akhmediev, N. & Ankiewicz, A. Solitons: Non-linear Pulses and Beams (Chapman & Hall, 1997).

    MATH  Google Scholar 

  22. Kuznetsov, E. Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. 22, 507–508 (1977).

    ADS  Google Scholar 

  23. Peregrine, D. H. Water-waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B 25, 16–43 (1983).

    Article  MATH  Google Scholar 

  24. Shrira, V. I. & Geogjaev, V. V. What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11–22 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. Akhmediev, N., Ankiewicz, A. & Taki, M. Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009).

    Article  ADS  MATH  Google Scholar 

  26. Dubard, P., Gaillard, P., Klein, C. & Matveev, V. B. On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010).

    Article  Google Scholar 

  27. Dubard, P. & Matveev, V. B. Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth Syst. Sci. 11, 667–672 (2011).

    Article  ADS  Google Scholar 

  28. Kedziora, D. J., Ankiewicz, A. & Akhmediev, N. Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions. Phys. Rev. E 88, 013207 (2013).

    Article  ADS  Google Scholar 

  29. Ma, Y. C. Perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Akhmediev, N. & Korneev, V. I. Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986).

    Article  MATH  Google Scholar 

  31. Henderson, K. L., Peregrine, D. H. & Dold, J. W. Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29, 341–361 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  32. Agrawal, G. P. Nonlinear Fiber Optics 5th edn (Academic Press, 2013).

    MATH  Google Scholar 

  33. Akhmediev, N., Ankiewicz, A. & Soto-Crespo, J. M. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009).

    Article  ADS  Google Scholar 

  34. Akhmediev, N., Soto-Crespo, J. M. & Ankiewicz, A. Extreme waves that appear from nowhere: On the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Frisquet, B., Kibler, B. & Millot, G. Collision of Akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3, 041032 (2013 10.1103/PhysRevX.3.041032).

    Article  Google Scholar 

  36. Akhmediev, N., Eleonskii, V. M. & Kulagin, N. E. Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. JETP 62, 894–899 (1985).

    Google Scholar 

  37. Tai, K., Tomita, A., Jewell, J. L. & Hasegawa, A. Generation of subpicosecond soliton-like optical pulses at 0.3 THz repetition rate by induced modulational instability. Appl. Phys. Lett. 49, 236–238 (1986).

    Article  ADS  Google Scholar 

  38. Greer, E. J., Patrick, D. M., Wigley, P. G. J. & Taylor, J. R. Generation of 2 THz repetition rate pulse trains through induced modulational instability. Electron. Lett. 25, 1246–1248 (1989).

    Article  Google Scholar 

  39. Kibler, B. et al. The Peregrine soliton in nonlinear fibre optics. Nature Phys. 6, 790–795 (2010).

    Article  ADS  Google Scholar 

  40. Hammani, K. et al. Spectral dynamics of modulation instability described using Akhmediev breather theory. Opt. Lett. 36, 2140–2142 (2011).

    Article  ADS  Google Scholar 

  41. Van Simaeys, G., Emplit, P. & Haelterman, M. Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902 (2001).

    Article  ADS  Google Scholar 

  42. Kibler, B. et al. Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012).

    Article  Google Scholar 

  43. Wabnitz, S. & Akhmediev, N. Efficient modulation frequency doubling by induced modulation instability. Opt. Commun. 283, 1152–1154 (2010).

    Article  ADS  Google Scholar 

  44. Erkintalo, M. et al. Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901 (2011).

    Article  ADS  Google Scholar 

  45. Hammani, K. et al. Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112–114 (2011).

    Article  ADS  Google Scholar 

  46. Erkintalo, M., Genty, G., Wetzel, B. & Dudley, J. M. Akhmediev breather evolution in optical fiber for realistic initial conditions. Phys. Lett. A 375, 2029–2034 (2011).

    Article  ADS  MATH  Google Scholar 

  47. Coillet, A., Dudley, J. M., Genty, G., Larger, L. & Chembo, Y. K. Optical rogue waves in whispering-gallery-mode resonators. Phys. Rev. A 89, 013835 (2014).

    Article  ADS  Google Scholar 

  48. Kibler, B., Hammani, K., Michel, C., Finot, C. & Picozzi, A. Rogue waves, rational solitons and wave turbulence theory. Phys. Lett. A 375, 3149–3155 (2011).

    Article  ADS  MATH  Google Scholar 

  49. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  50. Zakharov, V. E. & Gelash, A. A. Nonlinear stage of modulation instability. Phys. Rev. Lett. 111, 054101 (2013).

    Article  ADS  Google Scholar 

  51. Akhmediev, N. & Pelinovsky, E. Introductory remarks on “Discussion & Debate: Rogue Waves – Towards a Unifying Concept?” Eur. Phys. J. Spec. Top. 185, 1–4 (2010).

    Article  Google Scholar 

  52. Ankiewicz, A., Soto-Crespo, J. M., Chowdhury, M. A. & Akhmediev, N. Rogue waves in optical fibers in presence of third-order dispersion, self-steepening, and self-frequency shift. J. Opt. Soc. Am. B 30, 87–94 (2013).

    Article  ADS  Google Scholar 

  53. Mahnke, C. & Mitschke, F. Possibility of an Akhmediev breather decaying into solitons. Phys. Rev. A 85, 033808 (2012).

    Article  ADS  Google Scholar 

  54. Wai, P. K. A., Menyuk, C. R., Lee, Y. C. & Chen, H. H. Nonlinear pulse-propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11, 464–466 (1986).

    Article  ADS  Google Scholar 

  55. Gordon, J. P. Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664 (1986).

    Article  ADS  Google Scholar 

  56. Islam, M. N. et al. Femtosecond distributed soliton spectrum in fibers. J. Opt. Soc. Am. B 6, 1149–1158 (1989).

    Article  ADS  Google Scholar 

  57. Frosz, M. H., Bang, O. & Bjarklev, A. Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express 14, 9391–9407 (2006).

    Article  ADS  Google Scholar 

  58. Luan, F., Skryabin, D. V., Yulin, A. V. & Knight, J. C. Energy exchange between colliding solitons in photonic crystal fibers. Opt. Express 14, 9844–9853 (2006).

    Article  ADS  Google Scholar 

  59. Genty, G. et al. Collisions and turbulence in optical rogue wave formation. Phys. Lett. A 374, 989–996 (2010).

    Article  ADS  MATH  Google Scholar 

  60. Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nature Photon. 7, 102–112 (2013).

    Article  ADS  Google Scholar 

  61. Solli, D. R., Herink, G., Jalali, B. & Ropers, C. Fluctuations and correlations in modulation instability. Nature Photon. 6, 463–468 (2012).

    Article  ADS  Google Scholar 

  62. Godin, T. et al. Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt. Express 21, 18452–18460 (2013).

    Article  ADS  Google Scholar 

  63. Liu, C., Rees, E. J., Laurila, T., Jian, S. S. & Kaminski, C. F. An adaptive filter for studying the life cycle of optical rogue waves. Opt. Express 18, 26113–26122 (2010).

    Article  ADS  Google Scholar 

  64. Kibler, B., Finot, C. & Dudley, J. M. Soliton and rogue wave statistics in supercontinuum generation in photonic crystal fibre with two zero dispersion wavelengths. Eur. Phys. J. Spec. Top. 173, 289–295 (2009).

    Article  Google Scholar 

  65. Erkintalo, M., Genty, G. & Dudley, J. M. Rogue-wave-like characteristics in femtosecond supercontinuum generation. Opt. Lett. 34, 2468–2470 (2009).

    Article  ADS  Google Scholar 

  66. Lafargue, C. et al. Direct detection of optical rogue wave energy statistics in supercontinuum generation. Electron. Lett. 45, 217–218 (2009).

    Article  Google Scholar 

  67. Mussot, A. et al. Observation of extreme temporal events in CW-pumped supercontinuum. Opt. Express 17, 17010–17015 (2009).

    Article  ADS  Google Scholar 

  68. Taki, M. et al. Third-order dispersion for generating optical rogue solitons. Phys. Lett. A 374, 691–695 (2010).

    Article  ADS  MATH  Google Scholar 

  69. Antikainen, A., Erkintalo, M., Dudley, J. M. & Genty, G. On the phase-dependent manifestation of optical rogue waves. Nonlinearity 25, R73–R83 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Driben, R. & Babushkin, I. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers. Opt. Lett. 37, 5157–5159 (2012).

    Article  ADS  Google Scholar 

  71. Dyachenko, A. I., Zakharov, V. E., Pushkarev, A. N., Shvets, V. F. & Yankov, V. V. Soliton turbulence in nonintegrable wave systems. Zh. Eksp. Teor. Fiz. Sov. Phys. JETP 96, 2026–2032 (1989).

    ADS  Google Scholar 

  72. Hammani, K., Kibler, B., Finot, C. & Picozzi, A. Emergence of rogue waves from optical turbulence. Phys. Lett. A 374, 3585–3589 (2010).

    Article  ADS  MATH  Google Scholar 

  73. Buryak, A. V. & Akhmediev, N. N. Internal friction between solitons in near-integrable systems. Phys. Rev. E 50, 3126–3133 (1994).

    Article  ADS  Google Scholar 

  74. Wetzel, B. et al. Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 882 (2012).

    Article  Google Scholar 

  75. Turitsyn, S. K. & Derevyanko, S. A. Soliton-based discriminator of noncoherent optical pulses. Phys. Rev. A 78, 063819 (2008).

    Article  ADS  Google Scholar 

  76. Solli, D. R., Ropers, C. & Jalali, B. Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008).

    Article  ADS  Google Scholar 

  77. Genty, G., Dudley, J. M. & Eggleton, B. J. Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime. Appl. Phys. B 94, 187–194 (2009).

    Article  ADS  Google Scholar 

  78. Solli, D. R., Jalali, B. & Ropers, C. Seeded supercontinuum generation with optical parametric down-conversion. Phys. Rev. Lett. 105, 233902 (2010).

    Article  ADS  Google Scholar 

  79. Solli, D. R., Ropers, C. & Jalali, B. Rare frustration of optical supercontinuum generation. Appl. Phys. Lett. 96, 151108 (2010).

    Article  ADS  Google Scholar 

  80. DeVore, P. T. S., Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Stimulated supercontinuum generation extends broadening limits in silicon. Appl. Phys. Lett. 100, 101111 (2012).

    Article  ADS  Google Scholar 

  81. Cheung, K. K. Y., Zhang, C., Zhou, Y., Wong, K. K. Y. & Tsia, K. K. Manipulating supercontinuum generation by minute continuous wave. Opt. Lett. 36, 160–162 (2011).

    Article  ADS  Google Scholar 

  82. Li, Q. et al. Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation. Opt. Express 19, 13757–13769 (2011).

    Article  ADS  Google Scholar 

  83. Nguyen, D. M. et al. Incoherent resonant seeding of modulation instability in optical fiber. Opt. Lett. 38, 5338–5341 (2013).

    Article  ADS  Google Scholar 

  84. Kudlinski, A. et al. Control of pulse-to-pulse fluctuations in visible supercontinuum. Opt. Express 18, 27445–27454 (2010).

    Article  ADS  Google Scholar 

  85. Tian, Q., Yang, Q., Dai, C. Q. & Zhang, J. F. Controllable optical rogue waves: Recurrence, annihilation and sustainment. Opt. Commun. 284, 2222–2225 (2011).

    Article  ADS  Google Scholar 

  86. Haken, H. Synergetics. Introduction and Advanced Topics (Springer, 2004).

    Google Scholar 

  87. Hammani, K., Finot, C., Dudley, J. M. & Millot, G. Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers. Opt. Express 16, 16467–16474 (2008).

    Article  ADS  Google Scholar 

  88. Hammani, K., Finot, C. & Millot, G. Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave. Opt. Lett. 34, 1138–1140 (2009).

    Article  ADS  Google Scholar 

  89. Borlaug, D., Fathpour, S. & Jalali, B. Extreme value statistics in silicon photonics. IEEE Photon. J. 1, 33–39 (2009).

    Article  ADS  Google Scholar 

  90. DeVore, P. T. S., Solli, D. R., Borlaug, D., Ropers, C. & Jalali, B. Rogue events and noise shaping in nonlinear silicon photonics. J. Opt. 15, 064001 (2013).

    Article  ADS  Google Scholar 

  91. Pisarchik, A. N., Jaimes-Reategui, R., Sevilla-Escoboza, R., Huerta-Cuellar, G. & Taki, M. Rogue waves in a multistable system. Phys. Rev. Lett. 107, 274101 (2011).

    Article  ADS  Google Scholar 

  92. Randoux, S. & Suret, P. Experimental evidence of extreme value statistics in Raman fiber lasers. Opt. Lett. 37, 500–502 (2012).

    Article  ADS  Google Scholar 

  93. Kovalsky, M. G., Hnilo, A. A. & Tredicce, J. R. Extreme events in the Ti:sapphire laser. Opt. Lett. 36, 4449–4451 (2011).

    Article  ADS  Google Scholar 

  94. Runge, A. F. J., Aguergaray, C., Broderick, N. G. R. & Erkintalo, M. Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett. 39, 319–322 (2014).

    Article  ADS  Google Scholar 

  95. Bonazzola, C., Hnilo, A., Kovalsky, M. & Tredicce, J. R. Optical rogue waves in an all-solid-state laser with a saturable absorber: Importance of the spatial effects. J. Opt. 15, 064004 (2013).

    Article  ADS  Google Scholar 

  96. Soto-Crespo, J. M., Grelu, P. & Akhmediev, N. Dissipative rogue waves: Extreme pulses generated by passively mode-locked lasers. Phys. Rev. E 84, 016604 (2011).

    Article  ADS  Google Scholar 

  97. Bonatto, C. et al. Deterministic optical rogue waves. Phys. Rev. Lett. 107, 053901 (2011).

    Article  ADS  Google Scholar 

  98. Runge, A. F. J., Aguergaray, C., Broderick, N. G. R. & Erkintalo, M. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. Opt. Lett. 38, 4327–4330 (2013).

    Article  ADS  Google Scholar 

  99. Duguay, M. A., Hansen, J. W. & Shapiro, S. L. Study of Nd-glass laser radiation. IEEE J. Quant. Electron. 6, 725–743 (1970).

    Article  ADS  Google Scholar 

  100. Horowitz, M., Barad, Y. & Silberberg, Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt. Lett. 22, 799–801 (1997).

    Article  ADS  Google Scholar 

  101. Montina, A., Bortolozzo, U., Residori, S. & Arecchi, F. T. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett. 103, 173901 (2009).

    Article  ADS  Google Scholar 

  102. Majus, D., Jukna, V., Valiulis, G., Faccio, D. & Dubietis, A. Spatiotemporal rogue events in femtosecond filamentation. Phys. Rev. A 83, 025802 (2011).

    Article  ADS  Google Scholar 

  103. Lushnikov, P. M. & Vladimirova, N. Non-Gaussian statistics of multiple filamentation. Opt. Lett. 35, 1965–1967 (2010).

    Article  ADS  Google Scholar 

  104. Birkholz, S. et al. Spatiotemporal rogue events in optical multiple filamentation. Phys. Rev. Lett. 111, 243903 (2013).

    Article  ADS  Google Scholar 

  105. Höhmann, R., Kuhl, U., Stöckmann, H. J., Kaplan, L. & Heller, E. J. Freak waves in the linear regime: A microwave study. Phys. Rev. Lett. 104, 093901 (2010).

    Article  ADS  Google Scholar 

  106. Arecchi, F. T., Bortolozzo, U., Montina, A. & Residori, S. Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys. Rev. Lett. 106, 153901 (2011).

    Article  ADS  Google Scholar 

  107. The power of analogies. Nature Photon. 8, 1 (2014 10.1038/nphoton.2013.359).

  108. Vergeles, S. & Turitsyn, S. K. Optical rogue waves in telecommunication data streams. Phys. Rev. A 83, 061801 (2011).

    Article  ADS  Google Scholar 

  109. Wabnitz, S. Optical tsunamis: Shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion. J. Opt. 15, 064002 (2013).

    Article  ADS  Google Scholar 

  110. Bendahmane, A., Vanvincq, O., Mussot, A. & Kudlinski, A. Control of the soliton self-frequency shift dynamics using topographic optical fibers. Opt. Lett. 38, 3390–3393 (2013).

    Article  ADS  Google Scholar 

  111. Droques, M. et al. Fourth-order dispersion mediated modulation instability in dispersion oscillating fibers. Opt. Lett. 38, 3464–3467 (2013).

    Article  ADS  Google Scholar 

  112. Chabchoub, A., Hoffmann, N. P. & Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011).

    Article  ADS  Google Scholar 

  113. Chabchoub, A., Hoffmann, N., Onorato, M. & Akhmediev, N. Super rogue waves: Observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012 10.1103/PhysRevX.2.011015).

    Article  Google Scholar 

  114. Onorato, M., Proment, D., Clauss, G. & Klein, M. Rogue waves: From nonlinear Schrödinger breather solutions to sea-keeping test. PLoS ONE 8, e54629 (2013).

    Article  ADS  Google Scholar 

  115. Dysthe, K. B. Note on a modification to the non-linear Schrödinger-equation for application to deep-water waves. P. Roy. Soc. Lond. A Mat. 369, 105–114 (1979).

    Article  ADS  MATH  Google Scholar 

  116. Dias, F. & Kharif, C. Nonlinear gravity and capillary-gravity waves. Ann. Rev. Fluid Mech. 31, 301–346 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  117. Zakharov, V. E. & Dyachenko, A. I. About shape of giant breather. Eur. J. Mech. B 29, 127–131 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  118. Chabchoub, A. et al. Hydrodynamic supercontinuum. Phys. Rev. Lett. 111, 054104 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.M.D. and F.D. acknowledge the European Research Council Advanced Grant ERC-2011-AdG-290562 MULTIWAVE. J.M.D. also acknowledges support from the Agence Nationale de la Recherche project ANR-12-BS04-0011-05 OPTIROC. F.D. also acknowledges the Science Foundation Ireland grant SFI/12/ERC/E2227. M.E. acknowledges the Marsden Fund of the Royal Society of New Zealand. G.G. acknowledges the Academy of Finland Grants 130 099 and 132 279.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this work.

Corresponding author

Correspondence to Goëry Genty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudley, J., Dias, F., Erkintalo, M. et al. Instabilities, breathers and rogue waves in optics. Nature Photon 8, 755–764 (2014). https://doi.org/10.1038/nphoton.2014.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing