Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct generation of three-photon polarization entanglement

Abstract

Non-classical states of light are of fundamental importance for emerging quantum technologies. All optics experiments producing multi-qubit entangled states have until now relied on outcome post-selection, a procedure where only the measurement results corresponding to the desired state are considered. This method severely limits the usefulness of the resulting entangled states. Here, we show the direct production of polarization-entangled photon triplets by cascading two entangled downconversion processes. Detecting the triplets with high-efficiency superconducting nanowire single-photon detectors allows us to fully characterize them through quantum state tomography. We use our three-photon entangled state to demonstrate the ability to herald Bell states, a task that was not possible with previous three-photon states, and test local realism by violating the Mermin and Svetlichny inequalities. These results represent a significant breakthrough for entangled multi-photon state production by eliminating the constraints of outcome post-selection, providing a novel resource for optical quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarization entangled photons using cascaded spontaneous parametric downconversion.
Figure 2: Measurement to determine optimal phase.
Figure 3: Two-dimensional histogram of time differences between detected photon events.
Figure 4: Reconstructed three-photon density matrix.
Figure 5: Real and imaginary parts of the reconstructed density matrices of the heralded two-photon states.

Similar content being viewed by others

References

  1. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  2. Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  3. Edamatsu, K. Entangled photons: Generation, observation and characterization. Jpn J. Appl. Phys. 46, 7175–7187 (2007).

    Article  ADS  Google Scholar 

  4. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  5. Pan, J., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001).

    Article  ADS  Google Scholar 

  6. Eibl, M. et al. Experimental observation of four-photon entanglement from parametric down-conversion. Phys. Rev. Lett. 90, 200403 (2003).

    Article  ADS  Google Scholar 

  7. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C. & Weinfurter, H. Experimental realization of a three-qubit entangled w state. Phys. Rev. Lett. 92, 077901 (2004).

    Article  ADS  Google Scholar 

  8. Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

    Article  ADS  Google Scholar 

  9. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  10. Lu, C.-Y. et al. Experimental entanglement of six photons in graph states. Nature Phys. 3, 91–95 (2007).

    Article  ADS  Google Scholar 

  11. Yao, X.-C. et al. Observation of eight-photon entanglement. Nature Photon. 6, 225–228 (2012).

    Article  ADS  Google Scholar 

  12. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  13. Zeilinger, A., Horne, M. A., Weinfurter, H. & Żukowski, M. Three-particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997).

    Article  ADS  Google Scholar 

  14. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  Google Scholar 

  15. Kok, P. & Braunstein, S. L. Limitations on the creation of maximal entanglement. Phys. Rev. A 62, 064301 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  16. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  17. Cabello, A. & Sciarrino, F. Loophole-free bell test based on local precertification of photon's presence. Phys. Rev. X 2, 021010 (2012).

    Google Scholar 

  18. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001).

    Article  ADS  Google Scholar 

  19. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  20. D'Ariano, G. M., Rubin, M., Sacchi, M. F. & Shih, Y. Quantum tomography of the GHZ state. Fortschr. Phys. 48, 599–603 (2000).

    Article  Google Scholar 

  21. Hübel, H. et al. Direct generation of photon triplets using cascaded photon-pair sources. Nature 466, 601–603 (2010).

    Article  ADS  Google Scholar 

  22. Hübel, H., Hamel, D. R., Resch, K. J. & Jennewein, T. Generation of various tri-partite entangled states using cascaded spontaneous down-conversion. AIP Conf. Proc. 1363, 331–334 (2011).

    Article  ADS  Google Scholar 

  23. Shalm, L. K. et al. Three-photon energy-time entanglement. Nature Phys. 9, 19–22 (2013).

    Article  ADS  Google Scholar 

  24. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  25. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nature Photon. 7, 210–214 (2013).

    Article  ADS  Google Scholar 

  26. Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73, 012316 (2006).

    Article  ADS  Google Scholar 

  27. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).

    Article  ADS  Google Scholar 

  28. Herbauts, I., Blauensteiner, B., Poppe, A., Jennewein, T. & Hübel, H. Demonstration of active routing of entanglement in a multi-user network. Opt. Express 21, 29013–29024 (2013).

    Article  ADS  Google Scholar 

  29. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  30. Lavoie, J., Kaltenbaek, R. & Resch, K. J. Experimental violation of Svetlichny's inequality. New J. Phys. 11, 073051 (2009).

    Article  ADS  Google Scholar 

  31. Lu, H.-X., Zhao, J.-Q., Wang, X.-Q. & Cao, L.-Z. Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger–Horne–Zeilinger class states. Phys. Rev. A 84, 012111 (2011).

    Article  ADS  Google Scholar 

  32. Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  33. Svetlichny, G. Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  34. Tóth, G., Gühne, O., Seevinck, M. & Uffink, J. Addendum to ‘Sufficient conditions for three-particle entanglement and their tests in recent experiments’. Phys. Rev. A 72, 014101 (2005).

    Article  ADS  Google Scholar 

  35. Bancal, J.-D., Gisin, N., Liang, Y.-C. & Pironio, S. Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011).

    Article  ADS  Google Scholar 

  36. Cereceda, J. L. Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  37. Collins, D., Gisin, N., Popescu, S., Roberts, D. & Scarani, V. Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002).

    Article  ADS  Google Scholar 

  38. Bancal, J.-D., Barrett, J., Gisin, N. & Pironio, S. Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013).

    Article  ADS  Google Scholar 

  39. Śliwa, C. & Banaszek, K. Conditional preparation of maximal polarization entanglement. Phys. Rev. A 67, 030101 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  40. Barz, S., Cronenberg, G., Zeilinger, A. & Walther, P. Heralded generation of entangled photon pairs. Nature Photon. 4, 553–556 (2010).

    Article  ADS  Google Scholar 

  41. Wagenknecht, C. et al. Experimental demonstration of a heralded entanglement source. Nature Photon. 4, 549–552 (2010).

    Article  ADS  Google Scholar 

  42. Sangouard, N. et al. Faithful entanglement swapping based on sum-frequency generation. Phys. Rev. Lett. 106, 120403 (2011).

    Article  ADS  Google Scholar 

  43. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  44. Young, R. J. et al. Bell-inequality violation with a triggered photon-pair source. Phys. Rev. Lett. 102, 030406 (2009).

    Article  ADS  Google Scholar 

  45. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  ADS  Google Scholar 

  46. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  47. Hillery, M., Bužek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  48. Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  49. Gisin, N., Pironio, S. & Sangouard, N. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010).

    Article  ADS  Google Scholar 

  50. Langford, N. K. et al. Efficient quantum computing using coherent photon conversion. Nature 478, 360–363 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ontario Ministry of Research and Innovation Early Researcher Award, QuantumWorks, the Natural Sciences and Engineering Research Council of Canada, Ontario Centres of Excellence, Industry Canada, the Canadian Institute for Advanced Research, Canada Research Chairs and the Canadian Foundation for Innovation. The authors thank T. Zhao for contributions to the phase-stabilization software.

Author information

Authors and Affiliations

Authors

Contributions

D.R.H., L.K.S., H.H., K.J.R. and T.J. planned the experiment. D.R.H., L.K.S. and H.H. built the experimental set-up. D.R.H. carried out the experiment and analysed the data. A.J.M., F.M., V.B.V., R.P.M. and S.W.N. developed the detector system. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Deny R. Hamel or Thomas Jennewein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamel, D., Shalm, L., Hübel, H. et al. Direct generation of three-photon polarization entanglement. Nature Photon 8, 801–807 (2014). https://doi.org/10.1038/nphoton.2014.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.218

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing