Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser streaking of free electrons at 25 keV

Abstract

Recording electronic motion in atomic systems requires attosecond and picometre resolutions. Current attosecond technology provides photon pulses up to an energy range of 100 eV, with wavelengths far too long to access structures on the atomic scale. In contrast, ultrashort free-electron pulses with sub-Ångstrom de Broglie wavelengths offer the potential to resolve sub-atomic structures. Here, we demonstrate an optical-field-driven streak camera for their temporal characterization. Our concept is to have an electron beam and a laser beam intersect at an ultrathin metal mirror, and potentially offers attosecond resolution. The technique will be instrumental in advancing ultrafast electron diffraction towards ever higher temporal resolution in the pursuit of the long-term goal of sub-atomic four-dimensional imaging. As a first application, we study the influence of electron–electron interactions on the characteristics of few-electron pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept for attosecond streaking of freely propagating electron pulses at 25 keV.
Figure 2: Streaking results.
Figure 3: Field dependence and electron pulse characterization.
Figure 4: Semi-classical simulations of free-electron streaking.
Figure 5: Multi-electron dynamics in freely propagating electron pulses.

Similar content being viewed by others

References

  1. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  2. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  3. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    Article  ADS  Google Scholar 

  4. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  5. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    Article  ADS  Google Scholar 

  6. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  7. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  8. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    Article  ADS  Google Scholar 

  9. Blaga, C. I. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

    Article  ADS  Google Scholar 

  10. Flannigan, D. J. & Zewail, A. H. 4D electron microscopy: principles and applications. Acc. Chem. Res. 45, 1828–1839 (2012).

    Article  Google Scholar 

  11. Sciaini, G. & Miller, R. J. D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74, 096101 (2011).

    Article  ADS  Google Scholar 

  12. Shorokhov, D. & Zewail, A. H. 4D electron imaging: principles and perspectives. Phys. Chem. Chem. Phys. 10, 2879–2893 (2008).

    Article  Google Scholar 

  13. Chergui, M. & Zewail, A. H. Electron and X-ray methods of ultrafast structural dynamics: advances and applications. ChemPhysChem 10, 28–43 (2009).

    Article  Google Scholar 

  14. Hebeisen, C. T. et al. Femtosecond electron pulse characterization using laser ponderomotive scattering. Opt. Lett. 31, 3517–3519 (2006).

    Article  ADS  Google Scholar 

  15. Hebeisen, C. T. et al. Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses. Opt. Express 16, 3334–3341 (2008).

    Article  ADS  Google Scholar 

  16. Van Oudheusden, T. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

    Article  ADS  Google Scholar 

  17. Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. Ultrafast electron optics: Propagation dynamics of femtosecond electron packets. J. Appl. Phys. 92, 1643–1648 (2002).

    Article  ADS  Google Scholar 

  18. Lobastov, V. A., Srinivasan, R. & Zewail, A. H. Four-dimensional ultrafast electron microscopy. Proc. Natl Acad. Sci. USA 102, 7069–7073 (2005).

    Article  ADS  Google Scholar 

  19. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article  ADS  Google Scholar 

  20. Aidelsburger, M., Kirchner, F. O., Krausz, F. & Baum, P. Single-electron pulses for ultrafast diffraction. Proc. Natl Acad. Sci. USA 107, 19714–19719 (2010).

    Article  ADS  Google Scholar 

  21. Fill, E., Veisz, L., Apolonski, A. & Krausz, F. Sub-fs electron pulses for ultrafast electron diffraction. New J. Phys. 8, 272 (2006).

    Article  ADS  Google Scholar 

  22. Veisz, L. et al. Hybrid DC–AC electron gun for fs-electron pulse generation. New J. Phys. 9, 451 (2007).

    Article  ADS  Google Scholar 

  23. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  24. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  25. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  26. Bucksbaum, P. H., Bashkansky, M. & McIlrath, T. J. Scattering of electrons by intense coherent-light. Phys. Rev. Lett. 58, 349–352 (1987).

    Article  ADS  Google Scholar 

  27. Plettner, T. et al. Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum. Phys. Rev. Lett. 95, 134801 (2005).

    Article  ADS  Google Scholar 

  28. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  Google Scholar 

  29. Park, S. T., Lin, M. M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).

    Article  ADS  Google Scholar 

  30. Yurtsever, A., van der Veen, R. M. & Zewail, A. H. Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335, 59–64 (2012).

    Article  ADS  Google Scholar 

  31. Park, S. T., Kwon, O. H. & Zewail, A. H. Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning. New J. Phys. 14, 053046 (2012).

    Article  ADS  Google Scholar 

  32. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  33. Reckenthaeler, P. et al. Proposed method for measuring the duration of electron pulses by attosecond streaking. Phys. Rev. A 77, 042902 (2008).

    Article  ADS  Google Scholar 

  34. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free-free transitions following 6-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).

    Article  ADS  Google Scholar 

  35. Naumov, S. et al. Approaching the microjoule frontier with femtosecond laser oscillators. New J. Phys. 7, 216 (2005).

    Article  ADS  Google Scholar 

  36. Mairesse, Y. & Quere, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phy. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  37. Quere, F., Mairesse, Y. & Itatani, J. Temporal characterization of attosecond XUV fields. J. Mod. Opt. 52, 339–360 (2005).

    Article  ADS  Google Scholar 

  38. Li, R. K. et al. Experimental demonstration of high quality MeV ultrafast electron diffraction. Rev. Sci. Instrum. 80, 083303 (2009).

    Article  ADS  Google Scholar 

  39. Tokita, S., Inoue, S., Masuno, S., Hashida, M. & Sakabe, S. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse. Appl. Phys. Lett. 95, 111911 (2009).

    Article  ADS  Google Scholar 

  40. Musumeci, P., Moody, J. T., Scoby, C. M., Gutierrez, M. S. & Westfall, M. Laser-induced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction. Appl. Phys. Lett. 97, 063502 (2010).

    Article  ADS  Google Scholar 

  41. Muro'oka, Y. et al. Transmission-electron diffraction by MeV electron pulses. Appl. Phys. Lett. 98, 251903 (2011).

    Article  ADS  Google Scholar 

  42. Kirchner, F. O., Lahme, S., Krausz, F. & Baum, P. Coherence of femtosecond single electrons exceeds biomolecular dimensions. New J. Phys. 15, 063021 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Frischke for producing aluminium films, V. Yakovlev for discussions about coherence and streaking simulations, and S. Lahme for support with error analysis. The authors acknowledge funding from the European Research Council, the Munich Centre of Advanced Photonics, and the Rudolf-Kaiser Foundation. F.O.K. and A.G. are supported by the International Max-Planck Research School for Advanced Photon Science.

Author information

Authors and Affiliations

Authors

Contributions

P.B. and F.K. conceived the streaking concept and F.O.K. investigated its feasibility. A.G. conceived and constructed the beamline and energy analyser. F.O.K. constructed the streaking interaction region. A.G. carried out a preliminary experiment and F.O.K. the final experiment. A.G. evaluated the analyser's output into spectrograms and F.O.K. analysed that data further. P.B. performed the semiclassical simulations. All authors interpreted the results. F.O.K. and P.B. created the figures. All authors wrote the paper. The total contributions of F.O.K. and A.G. were comparable.

Corresponding author

Correspondence to P. Baum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchner, F., Gliserin, A., Krausz, F. et al. Laser streaking of free electrons at 25 keV. Nature Photon 8, 52–57 (2014). https://doi.org/10.1038/nphoton.2013.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing