Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photocurrent generation in semiconducting and metallic carbon nanotubes

Abstract

The fundamental mechanism underlying photocurrent generation in carbon nanotubes1,2,3 has long been an open question. In photocurrent generation, the temperature of the photoexcited charge carriers determines the transport regime by which the electrons and holes are conducted through the nanotube. Here, we identify two different photocurrent mechanisms for metallic and semiconducting carbon nanotube devices with induced p–n junctions4,5,6,7. Our photocurrent measurements as a function of charge carrier doping demonstrate a thermal origin8,9 for metallic nanotubes, where photo-excited hot carriers give rise to a current. For semiconducting nanotubes we demonstrate a photovoltaic mechanism10,11,12, where a built-in electric field results in electron–hole separation. Our results provide an understanding of the photoresponse in carbon nanotubes, which is not only of fundamental interest but also of importance for designing carbon-based, high-efficiency photodetectors and energy-harvesting devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPCM and electrical characterization of semiconducting and metallic carbon nanotube devices.
Figure 2: Gate-dependent conductivity.
Figure 3: Photocurrent response for homogeneous doping.
Figure 4: Spatial photocurrent response.

Similar content being viewed by others

References

  1. Biercuk, M. J., Ilani, S., Marcus, C. M. & McEuen, P. L. Electrical transport in single-walled carbon nanotubes. Top. Appl. Phys. 111, 455–493 (2008).

    Article  Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G., Charlier, J. C. & Hernandez, E. Electronic, thermal and mechanical properties of carbon nanotubes. Phil. Trans. R. Soc. Lond. A 362, 2065–2098 (2004).

    Article  ADS  Google Scholar 

  3. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007).

    Article  ADS  Google Scholar 

  4. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, P. H. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    Article  ADS  Google Scholar 

  5. Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    Article  ADS  Google Scholar 

  6. Lee, J. U., Gipp, P. P. & Heller, C. M. Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 85, 145–147 (2004).

    Article  ADS  Google Scholar 

  7. Barkelid, M., Steele, G. A. & Zwiller, V. Probing optical transitions in individual carbon nanotubes using polarized photocurrent spectroscopy. Nano Lett. 12, 5649–5653 (2012).

    Article  ADS  Google Scholar 

  8. St-Antoine, B. C., Menard, D. & Martel, R. Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 9, 3503–3508 (2009).

    Article  ADS  Google Scholar 

  9. Tsen, A. W., Donev, L. A. K., Kurt, H., Herman, L. H. & Park, J. Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy. Nature Nanotech. 4, 108–113 (2008).

    Article  ADS  Google Scholar 

  10. Balasubramanian, K., Burghard, M., Kern, K., Scolari, M. & Mews, A. Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett. 5, 507–510 (2005).

    Article  ADS  Google Scholar 

  11. Ahn, Y. H., Tsen, A. W., Kim, B., Park, Y. W. & Park, J. Photocurrent imaging of p–n junctions in ambipolar carbon nanotube transistors. Nano Lett. 7, 3320–3323 (2007).

    Article  ADS  Google Scholar 

  12. Balasubramanian, K., Fan, Y., Burghard, M. & Kern, K. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett. 84, 2400 (2004).

    Article  ADS  Google Scholar 

  13. Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nature Nanotech. 5, 27–31 (2010).

    Article  ADS  Google Scholar 

  14. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Mater. 4, 86–92 (2005).

    Article  ADS  Google Scholar 

  15. Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87, 073101 (2005).

    Article  ADS  Google Scholar 

  16. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  Google Scholar 

  17. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  18. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech. 7, 114–118 (2012).

    Article  ADS  Google Scholar 

  19. Buchs, G., Barkelid, M., Bagiante, S., Steele, G. A. & Zwiller, V. Imaging the formation of a p–n junction in a suspended carbon nanotube with scanning photocurrent microscopy. J. Appl. Phys. 110, 074308 (2011).

    Article  ADS  Google Scholar 

  20. Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

    Article  ADS  Google Scholar 

  21. Strait, J. H. et al. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 11, 4902–4906 (2011).

    Article  ADS  Google Scholar 

  22. Small, J. P., Perez, K. M. & Kim, P. Modulation of thermoelectric power of individual carbon nanotubes. Phys. Rev. Lett. 91, 256801 (2003).

    Article  ADS  Google Scholar 

  23. Perebeinos, V. & Avouris, P. Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B 74, 121410 (2006).

    Article  ADS  Google Scholar 

  24. Tielrooj, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    Article  ADS  Google Scholar 

  25. Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    Article  ADS  Google Scholar 

  26. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013).

    Article  ADS  Google Scholar 

  27. Sze, S. M. Semiconductor Devices Physics and Technology 225–237 (Wiley, 2002).

    Google Scholar 

  28. Ross, R. T. & Nozik, A. J. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982).

    Article  ADS  Google Scholar 

  29. Omari, M. & Kouklin, N. A. Photothermovoltaic effect in carbon nanotubes: en route toward junctionless infrared photocells and light sensors. Appl. Phys. Lett. 98, 243113 (2011).

    Article  ADS  Google Scholar 

  30. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Dutch Foundation for Fundamental Research on Matter (FOM). The authors would like to thank M.S. Rudner for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.B. fabricated the devices, performed the measurements and wrote the manuscript. V.Z. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Maria Barkelid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkelid, M., Zwiller, V. Photocurrent generation in semiconducting and metallic carbon nanotubes. Nature Photon 8, 47–51 (2014). https://doi.org/10.1038/nphoton.2013.311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing