Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wave engineering with THz quantum cascade lasers

Abstract

Quantum cascade lasers are compact devices based on mature compound semiconductors such as GaAs that take advantage of highly developed optoelectronic fabrication techniques to integrate linear and nonlinear functions. This Review discusses terahertz-wave engineering using quantum cascade lasers with a particular focus on techniques that have been implemented to control their spectral and output beam properties. After briefly introducing the types of active regions and surveying present maximum operating temperatures, we review several photonic structures used for frequency and beam engineering, ranging from distributed feedback lasers to photonic crystals. We then describe techniques that allow the upconversion of terahertz quantum cascade laser radiation in the near-infrared region using nonlinear intracavity mixing. Finally, we review frequency stabilization of terahertz quantum cascade lasers with a special emphasis on phase locking to near-infrared frequency combs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maximum operating temperatures of THz QCLs reported to date for pulsed mode operation.
Figure 2: DFB THz QCLs and MEMS-based device for wideband frequency tuning.
Figure 3: THz QCLs based on third-order DFB gratings and photonic crystals.
Figure 4: Photonic-crystal structures for high power extraction.
Figure 5: Nonlinear mixing of THz QCLs with near-infrared radiation.
Figure 6: Generation of a beat-note signal between a THz QCL and a femtosecond-laser comb.
Figure 7: Phase-locking of THz QCLs to electronic multipliers and femtosecond-laser combs.

Similar content being viewed by others

References

  1. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  2. Faist, J., Capasso, F., Sirtori, C., Sivco, D. & Cho, A. Y. in Intersubband Transitions in Quantum Wells: Physics and Device Applications II Vol. 66 (eds Liu, H. C. & Capasso, F.) 1–83 (Academic, 2000).

    Google Scholar 

  3. Yao, Y., Hoffman, A. J. & Gmachl, C. F. Mid-infrared quantum cascade lasers. Nature Photon. 6, 432–439 (2012).

    Article  ADS  Google Scholar 

  4. Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  5. Williams, B. S. Terahertz quantum-cascade lasers, Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  6. Coldren, L. A., Corzine, S. W. & Mašanović, M. L. Diode Lasers and Photonic Integrated Circuits. 2nd edn (Wiley, 2012).

    Book  Google Scholar 

  7. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  8. Sirtori, C. Applied physics: bridge for the terahertz gap. Nature 417, 132–133 (2002).

    Article  ADS  Google Scholar 

  9. Xu, G. et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nat. Commun. 3, 952 (2012).

    Article  ADS  Google Scholar 

  10. Barbieri, S. et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nature Photon. 4, 636–640 (2010).

    Article  ADS  Google Scholar 

  11. Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nature Photon. 3, 732–737 (2009).

    Article  ADS  Google Scholar 

  12. Amanti, M. I., Fischer, M., Scalari, G., Beck, M. & Faist, J. Low-divergence single-mode terahertz quantum cascade laser. Nature Photon. 3, 586–590 (2009).

    Article  ADS  Google Scholar 

  13. Miyai, E. et al. Photonics: lasers producing tailored beams. Nature 441, 946 (2006).

    Article  ADS  Google Scholar 

  14. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  15. Lourtioz, J. M. et al. Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd edn (Springer, 2008).

    MATH  Google Scholar 

  16. Mahler, L. et al. Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators. Appl. Phys. Lett. 84, 5446–5448 (2004).

    Article  ADS  Google Scholar 

  17. Mahler, L. et al. High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Appl. Phys. Lett. 87, 181101 (2005).

    Article  ADS  Google Scholar 

  18. Mujagi, E. et al. Vertically emitting terahertz quantum cascade ring lasers. Appl. Phys. Lett. 95, 011120 (2009).

    Article  ADS  Google Scholar 

  19. Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. Opt. Express 15, 113–128 (2007).

    Article  ADS  Google Scholar 

  20. Fan, J. A. et al. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt. Express 14, 11672–11680 (2006).

    Article  ADS  Google Scholar 

  21. Mahler, L. et al. High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell. Appl. Phys. Lett. 96, 191109 (2010).

    Article  ADS  Google Scholar 

  22. Vitiello, M. S. & Tredicucci, A. Tunable emission in THz quantum cascade lasers. IEEE Trans. THz Sci. Technol. 1, 76–84 (2011).

    Article  Google Scholar 

  23. Dhillon, S. S. et al. Terahertz transfer onto a telecom optical carrier. Nature Photon. 1, 411–415 (2007).

    Article  ADS  Google Scholar 

  24. Madeo, J. et al. All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities. Nature Photon. 6, 519–524 (2012).

    Article  ADS  Google Scholar 

  25. Williams, B. S., Kumar, S., Callebaut, H., Hu, Q. & Reno, J. L. THz quantum cascade laser at λ ≈ 10μm using metal waveguide for mode confinement. Appl. Phys. Lett. 83, 2124–2126 (2003).

    Article  ADS  Google Scholar 

  26. Maineult, W. et al. Microwave modulation of terahertz quantum cascade lasers: a transmission-line approach. Appl. Phys. Lett. 96, 021108 (2010).

    Article  ADS  Google Scholar 

  27. Gellie, P. et al. Injection locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation. Opt. Express 18, 20799–20816 (2010).

    Article  ADS  Google Scholar 

  28. Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nature Photon. 5, 306–313 (2011).

    Article  ADS  Google Scholar 

  29. Freeman, J. R. et al. Direct intensity sampling of a modelocked terahertz quantum cascade laser. Appl. Phys. Lett. 101, 181115 (2012).

    Article  ADS  Google Scholar 

  30. Consolino, L. et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. 3, 1040 (2012).

    Article  ADS  Google Scholar 

  31. Yokoyama, S., Nakamura, R., Nose, M., Araki, T. & Yasui, T. Terahertz spectrum analyzer based on a terahertz frequency comb. Opt. Express 16, 13052–13061 (2008).

    Article  ADS  Google Scholar 

  32. Rochat, M. et al. Low-threshold terahertz quantum-cascade lasers. Appl. Phys. Lett. 81, 1381–1383 (2002).

    Article  ADS  Google Scholar 

  33. Scalari, G. et al. Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl. Phys. Lett. 82, 3165–3167 (2003).

    Article  ADS  Google Scholar 

  34. Barbieri, S. et al. 2.9 THz quantum cascade lasers operating up to 70 K in continuous wave. Appl. Phys. Lett. 85, 1674–1677 (2004).

    Article  ADS  Google Scholar 

  35. Kohler, R. et al. Terahertz quantum-cascade lasers based on an interlaced photon-phonon cascade. Appl. Phys. Lett. 84, 1266–1268 (2004).

    Article  ADS  Google Scholar 

  36. Scalari, G., Hoyler, N., Giovannini, M. & Faist, J. Terahertz bound-to-continuum quantum cascade lasers based on optical-phonon scattering extraction. Appl. Phys. Lett. 86, 181101 (2005).

    Article  ADS  Google Scholar 

  37. Walther, C., Scalari, G., Faist, J., Beere, H. & Ritchie, D. Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett. 89, 231121 (2006).

    Article  ADS  Google Scholar 

  38. Bai, Y., Bandyopadhyay, N., Tsao, S., Slivken, S. & Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98, 181102 (2011).

    Article  ADS  Google Scholar 

  39. Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken S. & Razeghi, M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).

    Article  ADS  Google Scholar 

  40. Bismuto, A., Beck, M. & Faist, J. High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K. Appl. Phys. Lett. 98, 191104 (2011).

    Article  ADS  Google Scholar 

  41. Scalari, G., Terazzi, R., Giovannini, M., Hoyler, N. & Faist, J. Population inversion by resonant tunneling in quantum wells. Appl. Phys. Lett. 91, 032103 (2007).

    Article  ADS  Google Scholar 

  42. Wacker, A. Extraction-controlled quantum cascade lasers. Appl. Phys. Lett. 97, 081105 (2010).

    Article  ADS  Google Scholar 

  43. Vitiello, M. S., Scamarcio, G., Spagnolo, V., Dhillon, S. S. & Sirtori, C. Terahertz quantum cascade lasers with large wall-plug efficiency. Appl. Phys. Lett. 90, 191115 (2007).

    Article  ADS  Google Scholar 

  44. Williams, B. S, Kumar, S., Hu, Q. & Reno, J. L. Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13, 3331–3339 (2005).

    Article  ADS  Google Scholar 

  45. Fathololoumi, S. et al. Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling. Opt. Express 20, 3866–3876 (2012).

    Article  ADS  Google Scholar 

  46. Kumar, S., Chan, C. W. I., Hu, Q. & Reno, J. L. A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB . Nature Phys. 7, 166–171 (2011).

    Article  ADS  Google Scholar 

  47. Wade, A. et al. Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nature Photon. 3, 41–45 (2009).

    Article  ADS  Google Scholar 

  48. Sirtori, C. Quantum cascade lasers: breaking energy bands. Nature Photon. 3, 13–15 (2009).

    Article  ADS  Google Scholar 

  49. Chassagneux, Y. et al. Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme. IEEE Trans. Terahertz Sci. Tech. 2, 83–92 (2012).

    Article  ADS  Google Scholar 

  50. Belkin, M. A. et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nature Photon. 1, 288–292 (2007).

    Article  ADS  Google Scholar 

  51. Lu, Q. Y., Bandyopadhyay, N., Slivken, S., Bai, Y. & Razeghi, M. Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers. Appl. Phys. Lett. 99, 131106 (2011).

    Article  ADS  Google Scholar 

  52. Vijayraghavan, K. et al. Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers. Appl. Phys. Lett. 100, 251104 (2012).

    Article  ADS  Google Scholar 

  53. Kohen, S., Williams, B. S. & Hu, Q. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. J. Appl. Phys. 97, 053106 (2005).

    Article  ADS  Google Scholar 

  54. Qin, Q., Reno, J. L. & Hu, Q. MEMS-based tunable terahertz wire-laser over 330 GHz. Opt. Lett. 36, 692–694 (2011).

    Article  ADS  Google Scholar 

  55. Hugi, A. et al. External cavity quantum cascade laser tunable from 7.6 to 11.4 μm. Appl. Phys. Lett. 95, 061103 (2009).

    Article  ADS  Google Scholar 

  56. Lee, A. W. M., Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Tunable terahertz quantum cascade lasers with external gratings. Opt. Lett. 35, 910–912 (2010).

    Article  ADS  Google Scholar 

  57. Rungsawang, R. et al. Gain enhancement in a terahertz quantum cascade laser with parylene antireflection coatings. Appl. Phys. Lett. 98, 101102 (2011).

    Article  ADS  Google Scholar 

  58. Orlova, E. E. et al. Antenna model for wire lasers. Phys. Rev. Lett. 96, 173904 (2006).

    Article  ADS  Google Scholar 

  59. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd edn (Wiley, 1996).

    Google Scholar 

  60. Amanti, M. I., Fischer, M., Walther, C., Scalari, G. & Faist, J. Horn antennas for terahertz quantum cascade lasers. Electron. Lett. 43, 573–574 (2007).

    Article  Google Scholar 

  61. Maineult, W. et al. Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna. Appl. Phys. Lett. 93, 183508 (2008).

    Article  ADS  Google Scholar 

  62. Sirigu, L. et al. Terahertz quantum cascade lasers based on two-dimensional photonic crystal resonators. Opt. Express 16, 5206 (2008).

    Article  ADS  Google Scholar 

  63. Amanti, M. I., Scalari, G., Castellano, F., Beck, M. & Faist, J. Low divergence terahertz photonic-wire laser. Opt. Express 18, 6390–6395 (2010).

    Article  ADS  Google Scholar 

  64. Kao, T.-Y., Hu, Q. & Reno, J. L. Perfectly phase-matched third-order distributed feedback terahertz quantum-cascade lasers. Opt. Lett. 37, 2070–2072 (2012).

    Article  ADS  Google Scholar 

  65. Kloosterman, J. L. et al. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator. Appl. Phys. Lett. 102, 011123 (2013).

    Article  ADS  Google Scholar 

  66. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  67. Miyai, E. & Noda, S Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser. Appl. Phys. Lett. 86, 111113 (2005).

    Article  ADS  Google Scholar 

  68. Srinivasan, K. et al. Experimental demonstration of a high quality factor photonic crystal microcavity. Appl. Phys. Lett. 83, 1915–1917 (2003).

    Article  ADS  Google Scholar 

  69. Li, S., Witjaksono, G., Macomber, S. & Botez, D. Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift. IEEE J. Sel. Top. Quant. Electron. 9, 1153–1165 (2003).

    Article  ADS  Google Scholar 

  70. Colombelli, R. et al. Quantum cascade surface-emitting photonic-crystal laser. Science 302, 1374–1377 (2003).

    Article  ADS  Google Scholar 

  71. Dunbar, L. A. et al. Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. Opt. Express 13, 8960–8968 (2005).

    Article  ADS  Google Scholar 

  72. Chassagneux, Y. et al. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 457, 174–178 (2009).

    Article  ADS  Google Scholar 

  73. Sevin, G. et al. Optimized surface-emitting photonic-crystal terahertz quantum cascade lasers with reduced resonator dimensions. Appl. Phys. Lett. 97, 131101 (2010).

    Article  ADS  Google Scholar 

  74. Chassagneux, Y. et al. Graded photonic crystal terahertz quantum cascade lasers. Appl. Phys. Lett. 96, 031104 (2010).

    Article  ADS  Google Scholar 

  75. Nguyen, D.-T., Simoens, F., Ouvrier-Buffet, J.-L., Meilhan, J. & Coutaz, J.-L. Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements, IEEE Trans. Terahertz Sci. Tech. 2, 299–305 (2012).

    Article  ADS  Google Scholar 

  76. Kasraian, M. & Botez, D. Metal-grating-outcoupled, surface-emitting distributed-feedback diode lasers. Appl. Phys. Lett. 69, 2795–2797 (1996).

    Article  ADS  Google Scholar 

  77. Xu, G. et al. Stable single-mode operation of surface-emitting THz lasers with graded photonic heterostructure resonators. Appl. Phys. Lett. 102, 231105 (2013).

    Article  ADS  Google Scholar 

  78. Campi, D. & Coriasso, C. Wavelength conversion technologies. Photon. Network Commun. 2, 85–95 (2000).

    Article  Google Scholar 

  79. Černe, J. et al. Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells. Appl. Phys. Lett. 70, 3543–3545 (1997).

    Article  ADS  Google Scholar 

  80. Phillips, C., Su, M. Y., Sherwin, M. S., Ko, J. & Coldren, L. Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells. Appl. Phys. Lett. 75, 2728–2730 (1999).

    Article  ADS  Google Scholar 

  81. Carter, S. G. et al. Terahertz-optical mixing in undoped and doped GaAs quantum wells: from excitonic to electronic intersubband transitions. Phys. Rev. B 72, 155309 (2005).

    Article  ADS  Google Scholar 

  82. Yariv, A. Quantum Electronics. 3rd edn (Wiley, 1989).

    Google Scholar 

  83. Rosencher, E. & Bois, Ph. Model system for optical nonlinearities: asymmetric quantum wells. Phys. Rev. B 44, 011315 (1991).

    Article  Google Scholar 

  84. Sirtori, C., Capasso, F., Faist, J., Pfeiffer, L. N. & West, K. W. Far-infrared generation of doubly resonant difference frequency mixing in a coupled quantum well two-dimensional electron gas system. Appl. Phys. Lett. 65, 445–447 (1994).

    Article  ADS  Google Scholar 

  85. Berger, V. & Sirtori, C. Nonlinear phase matching in THz semiconductor waveguides. Semicond. Sci. Tech. 19, 964–970 (2004).

    Article  ADS  Google Scholar 

  86. Rafailov, E. U. et al. Second-harmonic generation from a first-order quasi-phase-matched GaAs/AlGaAs waveguide crystal. Opt. Lett. 26, 1984–1986 (2001).

    Article  ADS  Google Scholar 

  87. Vodopyanov, K. L. Optical THz-wave generation with periodically-inverted GaAs. Laser & Photon. Rev. 2, 11–25 (2008).

    Article  ADS  Google Scholar 

  88. Ravaro, M. et al. Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb. Opt. Express 20, 25654–25661 (2012).

    Article  ADS  Google Scholar 

  89. Vitiello, M. S. et al. Quantum-limited frequency fluctuations in a terahertz laser. Nature Photon. 6, 525–528 (2012).

    Article  ADS  Google Scholar 

  90. Hübers, H.-W. et al. High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl. Phys. Lett. 89, 061115 (2006).

    Article  ADS  Google Scholar 

  91. Ren, Y. et al. High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz. Appl. Phys. Lett. 98, 231109 (2011).

    Article  ADS  Google Scholar 

  92. Riehle, F. Frequency Standards. (Wiley, 2006).

    Google Scholar 

  93. Betz, A. L. et al. Frequency and phase-lock control of a 3 THz quantum cascade laser. Opt. Lett. 30, 1837–1839 (2005).

    Article  ADS  Google Scholar 

  94. Richter, H. et al. Submegahertz frequency stabilization of a terahertz quantum cascade laser to a molecular absorption line. Appl. Phys. Lett. 96, 071112 (2010).

    Article  ADS  Google Scholar 

  95. Ren, Y. et al. Frequency locking of single-mode 3.5-THz quantum cascade lasers using a gas cell. Appl. Phys. Lett. 100, 041111 (2012).

    Article  ADS  Google Scholar 

  96. Rabanus, D. et al. Phase locking of a 1.5THz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver. Opt. Express 17, 1159–1168 (2009).

    Article  ADS  Google Scholar 

  97. Khosropanah, P. et al. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference. Opt. Lett. 34, 2958–2960 (2009).

    Article  ADS  Google Scholar 

  98. VDI Virginia Diodes, Inc.; available at http://vadiodes.com.

  99. Ravaro, M. et al. Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer. Opt. Lett. 36, 3969–3971 (2011).

    Article  ADS  Google Scholar 

  100. Ravaro, M. et al. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling. Appl. Phys. Lett. 102, 091107 (2013).

    Article  ADS  Google Scholar 

  101. Ravaro, M. et al. Stabilization and mode locking of terahertz quantum cascade lasers. IEEE J. Sel. Top. Quant. Electron. 19, 8501011 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge several helpful discussions with S. Dhillon and G. Xu. C.S. gratefully acknowledges support from the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sirtori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirtori, C., Barbieri, S. & Colombelli, R. Wave engineering with THz quantum cascade lasers. Nature Photon 7, 691–701 (2013). https://doi.org/10.1038/nphoton.2013.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing