Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz polarization pulse shaping with arbitrary field control

Subjects

Abstract

Polarization shaping of terahertz pulses enables us to manipulate the temporal evolution of the amplitude and direction of electric-field vectors in a prescribed manner. Such arbitrary control of terahertz waves has great potential in expanding the scope of terahertz spectroscopy, the manipulation of terahertz nonlinear phenomena and coherent control. This is analogous to the use of pulse-shaping techniques for optical frequencies that involve light's polarization states as a controllable degree of freedom. Here, we propose and demonstrate a method for generating a prescribed terahertz polarization-shaped waveform by the optical rectification of a laser pulse whose instantaneous polarization state and intensity are controlled by an optical pulse shaper. We have developed a deterministic procedure to derive input parameters for the pulse shaper that are adequate to generate the desired terahertz polarization-shaped waveform, with the benefit of simple polarization selection rules for the rectification process of light waves propagating along the three-fold axis of a nonlinear optical crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of terahertz waves by shaped laser pulses with prescribed polarization states.
Figure 2: Deterministic procedure to find a set of shaper parameters from a given targeted terahertz polarization-shaped waveform, and its experimental verification.
Figure 3: Control of spectra of circularly polarized terahertz pulses.
Figure 4: Control of spectral phase of circularly polarized terahertz pulses.
Figure 5: Control of intensity and direction of terahertz waves as functions of time.

Similar content being viewed by others

References

  1. Brixner, T. et al. Quantum control by ultrafast polarization shaping. Phys. Rev. Lett. 92, 208301 (2004).

    Article  ADS  Google Scholar 

  2. Suzuki, T., Minemoto, S., Kanai, T. & Sakai, H. Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses. Phys. Rev. Lett. 92, 133005 (2004).

    Article  ADS  Google Scholar 

  3. Weise, F., Weber, S. M., Plewicki, M. & Lindinger, A. Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules. Chem. Phys. 332, 313–317 (2007).

    Article  Google Scholar 

  4. Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  5. Oron, D., Silberberg, Y., Dudovich, N. & Villeneuve, D. M. Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses. Phys. Rev. A 72, 063816 (2006).

    Article  ADS  Google Scholar 

  6. Wefers, M. M., Kawashima, H. & Nelson, K. A. Automated multidimensional coherent optical spectroscopy with multiple phase-related femtosecond pulses. J. Chem. Phys. 102, 9133 (1995).

    Article  ADS  Google Scholar 

  7. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    Article  ADS  Google Scholar 

  8. Gundogdu, K., Stone, K. W., Turner, D. B. & Nelson, K. A. Multidimensional coherent spectroscopy made easy. Chem. Phys. 341, 89–94 (2007).

    Article  Google Scholar 

  9. Shao, J. & Hänggi, P. Control of molecular chirality. J. Chem. Phys. 107, 9935 (1997).

    Article  ADS  Google Scholar 

  10. Fujimura, Y., González, L., Hoki, K., Manz, J. & Ohtsuki, Y. Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH. Chem. Phys. Lett. 306, 1–8 (1999).

    Article  ADS  Google Scholar 

  11. Hoki, K., Kröner, D. & Manz, J. Selective preparation of enantiomers from a racemate by laser pulses: model simulation for oriented atropisomers with coupled rotations and torsions. Chem. Phys. 267, 59–79 (2001).

    Article  Google Scholar 

  12. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  13. Cao, J. C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Phys. Rev. Lett. 91, 237401 (2003).

    Article  ADS  Google Scholar 

  14. Jewariya, M., Nagai, M. & Tanaka, K. Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse. Phys. Rev. Lett. 105, 203003 (2010).

    Article  ADS  Google Scholar 

  15. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  ADS  Google Scholar 

  16. Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).

    Article  ADS  Google Scholar 

  17. Lee, Y-S., Amer, N. & Hurlbut, W. C. Terahertz pulse shaping via optical rectification in poled lithium niobate. Appl. Phys. Lett. 82, 170–172 (2003).

    Article  ADS  Google Scholar 

  18. Liu, Y., Park, S-G. & Weiner, A. M. Terahertz waveform synthesis via optical pulse shaping. IEEE J. Sel. Top. Quant. Electron. 2, 709–719 (1996).

    Article  ADS  Google Scholar 

  19. Sohn, J. Y., Ahn, Y. H., Park, D. J., Oh, E. & Kim, D. S. Tunable terahertz generation using femtosecond pulse shaping. Appl. Phys. Lett. 81, 13–15 (2002).

    Article  ADS  Google Scholar 

  20. Stepanov, A. G., Hebling, J. & Kuhl, J. Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation. Opt. Express 12, 4650–4658 (2004).

    Article  ADS  Google Scholar 

  21. Danielson, J. R., Amer, N. & Lee, Y-S. Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate. Appl. Phys. Lett. 89, 211118 (2006).

    Article  ADS  Google Scholar 

  22. Dai, J., Karpowicz, N. & Zhang, X-C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 103, 023001 (2009).

    Article  ADS  Google Scholar 

  23. Lee, K., Yi, M., Song, J. D. & Ahn, J. Polarization shaping of few-cycle terahertz waves. Opt. Express 20, 12463–12472 (2012).

    Article  ADS  Google Scholar 

  24. Xu, J. et al. Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life's metabolic and genetic machinery. Astrobiology 3, 489–504 (2003).

    Article  ADS  Google Scholar 

  25. Shan, J., Dadap, J. I. & Heinz, T. F. Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization. Opt. Express 17, 7431–7439 (2009).

    Article  ADS  Google Scholar 

  26. Amer, N., Hurlbut, W. C., Norton, B. J., Lee, Y-S. & Norris, T. B. Generation of terahertz pulses with arbitrary elliptical polarization. Appl. Phys. Lett. 87, 221111 (2005).

    Article  ADS  Google Scholar 

  27. Shimano, R., Nishimura, H. & Sato, T. Frequency tunable circular polarization control of terahertz radiation. Jpn J. Appl. Phys. 21, L676–L678 (2005).

    Article  Google Scholar 

  28. Wen, H. & Lindenberg, A. M. Coherent terahertz polarization control through manipulation of electron trajectories. Phys. Rev. Lett. 103, 023902 (2009).

    Article  ADS  Google Scholar 

  29. Kanda, N., Higuchi, T., Shimizu, H., Konishi, K., Yoshioka, K. & Kuwata-Gonokami, M. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

    Article  ADS  Google Scholar 

  30. Brixner, T. & Gerber, G. Femtosecond polarization pulse shaping. Opt. Lett. 26, 557–559 (2001).

    Article  ADS  Google Scholar 

  31. Polachek, L., Oron, D. & Silberberg, Y. Full control of the spectral polarization of ultrashort pulses. Opt. Lett. 31, 631–633 (2006).

    Article  ADS  Google Scholar 

  32. Plewicki, M., Weise, F., Weber, S. M. & Lindinger, A. Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer. Appl. Opt. 45, 8354–8359 (2006).

    Article  ADS  Google Scholar 

  33. Ninck, M., Galler, A., Feurer, T. & Brixner, T. Programmable common-path vector field synthesizer for femtosecond pulses. Opt. Lett. 32, 3379–3381 (2007).

    Article  ADS  Google Scholar 

  34. Sato, M., Suzuki, T. & Misawa, K. Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping. Rev. Sci. Instrum. 80, 123107 (2009).

    Article  ADS  Google Scholar 

  35. Selle, R. et al. Generation of polarization-shaped ultraviolet femtosecond pulses. Opt. Lett. 33, 803–805 (2008).

    Article  ADS  Google Scholar 

  36. Seidel, M. T., Zhang, Z., Yan, S. & Tan, H-S. Ultraviolet polarization pulse shaping using sum-frequency generation. J. Opt. Soc. Am. B 28, 1146–1151 (2011).

    Article  ADS  Google Scholar 

  37. Seidel, M. T., Yan, S. & Tan, H-S. Mid-infrared polarization pulse shaping by parametric transfer. Opt. Lett. 35, 478–480 (2010).

    Article  ADS  Google Scholar 

  38. Higuchi, T., Kanda, N., Tamaru, H. & Kuwata-Gonokami, M. Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011).

    Article  ADS  Google Scholar 

  39. Bass, M., Franken, P. A. & Ward, J. F. Optical rectification. Phys. Rev. 138, A534–A542 (1965).

    Article  ADS  Google Scholar 

  40. Tanabe, T., Suto, K., Nishizawa, J., Sato, K. & Kimura, T. Tunable terahertz wave generation in the 3- to 7-THz region from GaP. Appl. Phys. Lett. 83, 237–239 (2003).

    Article  ADS  Google Scholar 

  41. Chen, Q., Tani, M., Jiang, Z. & Zhang X-C . Electro-optic transceivers for terahertz-wave applications. J. Opt. Soc. Am. B 18, 823–831 (2001).

    Article  ADS  Google Scholar 

  42. Casalbuoni, S., Schlarb, H., Schmidt, B., Schmüser, P., Steffen, B. & Winter, A. Numerical studies on the electro-optic detection of femtosecond electron bunches. Phys. Rev. ST Accel. Beams 11, 072802 (2008).

    Article  ADS  Google Scholar 

  43. Higuchi, T., Tamaru, H. & Kuwata-Gonokami, M. Selection rules for angular momentum transfer via impulsive stimulated Raman scattering. Phys. Rev. A 87, 013808 (2013).

    Article  ADS  Google Scholar 

  44. Weiner, A. M. Ultrafast Optics 112–118 (Wiley, 2009).

    Book  Google Scholar 

  45. Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).

    Article  ADS  Google Scholar 

  46. Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002).

    Article  ADS  Google Scholar 

  47. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  48. Hoffmann, M. C., Yeh, K-L., Hebling, J. & Nelson, K. A. Efficient terahertz generation by optical rectification at 1035 nm. Opt. Express 15, 11706–11713 (2007).

    Article  ADS  Google Scholar 

  49. Stobrawa, G. et al. A new high-resolution femtosecond pulse shaper. Appl. Phys. B 72, 627–630 (2001).

    Article  ADS  Google Scholar 

  50. Kanda, N., Konishi, K. & Kuwata-Gonokami, M. Terahertz wave polarization rotation with double layered metal grating of complementary chiral patterns. Opt. Express 15, 11117–11125 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI) in innovative area ‘Optical Science of Dynamically Correlated Electrons (DYCE, no. 2003)’ (20104002) and in priority area ‘Strong Photon–Molecule Coupling Fields (no. 470)’ (21020011) of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), by the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), the Photon Frontier Network Program (MEXT), and by the Special Coordination Funds for Promoting Science and Technology (MEXT). M.S., T.H. and N.K. acknowledge support from JSPS Research Fellowships. The authors thank Y. Svirko for his critical reading and suggestions about the manuscript, and thank the reviewers for providing comments that helped in improving the discussion.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and T.H. contributed equally to the work. All authors contributed to the design, data analysis and preparation of the manuscript. M.S. and N.K. performed all experiments at the University of Tokyo. M.S. and K.M. designed and developed the optical polarization shaper. T.H. and M.K-G. provided the theory for designing pulse shapes and terahertz generation. K.K. and T.S. gave technical support. K.Y. and M.K-G. provided experimental support. K.M. and M.K-G. planned and supervised the project.

Corresponding author

Correspondence to Makoto Kuwata-Gonokami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Higuchi, T., Kanda, N. et al. Terahertz polarization pulse shaping with arbitrary field control. Nature Photon 7, 724–731 (2013). https://doi.org/10.1038/nphoton.2013.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing