Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photonic streaking of attosecond pulse trains

Abstract

High harmonic radiation, produced when intense laser pulses interact with matter, is composed of a train of attosecond pulses. Individual pulses in this train carry information on ultrafast dynamics that vary from one half-optical-cycle to the next. Here, we demonstrate an all-optical photonic streaking measurement that provides direct experimental access to each attosecond pulse by mapping emission time onto propagation angle. This is achieved by inducing an ultrafast rotation of the instantaneous laser wavefront at the focus. We thus time-resolve attosecond pulse train generation, and hence the dynamics in the nonlinear medium itself. We apply photonic streaking to harmonic generation in gases and directly observe, for the first time, the influence of non-adiabatic electron dynamics and plasma formation on the generated attosecond pulse train. These experimental and numerical results also provide the first evidence of the generation of attosecond lighthouses in gases, which constitute ideal sources for attosecond pump–probe spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of attosecond lighthouses and photonic streaking in gases.
Figure 2: Harmonic generation in Ne probed by photonic streaking.
Figure 3: Time-to-angle mapping in photonic streaking.
Figure 4: Ionization gating probed by photonic streaking.

Similar content being viewed by others

References

  1. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  2. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  3. Wörner, H. J. et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

    Article  ADS  Google Scholar 

  4. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article  ADS  Google Scholar 

  5. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  6. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    Article  ADS  Google Scholar 

  7. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  8. Vincenti, H. & Quéré, F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 108, 113904 (2012).

    Article  ADS  Google Scholar 

  9. Wheeler, J. A. et al. Attosecond lighthouses from plasma mirrors. Nature Photon. 6, 829–833 (2012).

    Article  ADS  Google Scholar 

  10. Akturk, S., Gu, X., Gabolde, P. & Trebino, R. The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams. Opt. Express 13, 8642–8661 (2005).

    Article  ADS  Google Scholar 

  11. Krausz, F. & Ivanov, M. Y. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  12. Haworth, C. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nature Phys. 3, 52–57 (2006).

    Article  ADS  Google Scholar 

  13. Kim, K. T., Ko, D. H., Park, J. J., Tosa, V. & Nam, C. H. Complete temporal reconstruction of attosecond high-harmonic pulse trains. New J. Phys. 12, 083019 (2010).

    Article  Google Scholar 

  14. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  15. Chini, M., Wang, H., Khan, S. D., Chen, S. & Chang, Z. Retrieval of satellite pulses of single isolated attosecond pulses. Appl. Phys. Lett. 94, 161112 (2009).

    Article  ADS  Google Scholar 

  16. Shin, H. J., Lee, D. G., Cha, Y. H., Hong, K. H. & Nam, C. H. Generation of nonadiabatic blueshift of high harmonics in an intense femtosecond laser field. Phys. Rev. Lett. 83, 2544–2547 (1999).

    Article  ADS  Google Scholar 

  17. Varjú, K. et al. Reconstruction of attosecond pulse trains using an adiabatic phase expansion. Phys. Rev. Lett. 95, 243901 (2005).

    Article  ADS  Google Scholar 

  18. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    Article  ADS  Google Scholar 

  19. Kim, K. T., Kim, C. M., Baik, M. G., Umesh, G. & Nam, C. H. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805 (2004).

    Article  ADS  Google Scholar 

  20. Abel, M. et al. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366, 9–14 (2009).

    Article  Google Scholar 

  21. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

    Article  ADS  Google Scholar 

  22. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  23. Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nature Photon. 5, 655–663 (2011).

    Article  ADS  Google Scholar 

  24. Geissler, M., Tempea, G. & Brabec, T. Phase-matched high-order harmonic generation in the nonadiabatic limit. Phys. Rev. A 62, 033817 (2000).

    Article  ADS  Google Scholar 

  25. Tempea, G., Geissler, M., Schnürer, M. & Brabec, T. Self-phase-matched high harmonic generation. Phys. Rev. Lett. 84, 4329–4332 (2000).

    Article  ADS  Google Scholar 

  26. Frumker, E. et al. Oriented rotational wave-packet dynamics studies via high harmonic generation. Phys. Rev. Lett. 109, 113901 (2012).

    Article  ADS  Google Scholar 

  27. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  28. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  29. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article  ADS  Google Scholar 

  30. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Natural Sciences and Engineering Research Council, the Air Force Office of Scientific Research and the National Research Council–Commissariat à l'énergie atomique et aux énergies renouvelables agreement. F.Q. acknowledges support from the European Research Council (ERC grant agreement no. 240013).

Author information

Authors and Affiliations

Authors

Contributions

K.T.K., D.M.V., P.B.C. and F.Q. conceived the idea and designed the experiment. K.T.K., C.Z., T.R. and J.-F.H. performed the experiment and collected the data. K.T.K. and T.A. provided the numerical analysis. All authors contributed in analysing the experimental data and writing the manuscript.

Corresponding authors

Correspondence to Kyung Taec Kim or F. Quéré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1202 kb)

Supplementary Movie

Supplementary Movie (AVI 13223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Zhang, C., Ruchon, T. et al. Photonic streaking of attosecond pulse trains. Nature Photon 7, 651–656 (2013). https://doi.org/10.1038/nphoton.2013.170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing