Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Joining the quantum state of two photons into one

Abstract

Photons are the ideal carriers of quantum information for communication1,2. Each photon can have a single or multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes and so on3,4. However, as photons do not interact, multiplexing and demultiplexing the quantum information across photons has not been possible hitherto. Here, we introduce and demonstrate experimentally a physical process, named ‘quantum joining’, in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional Hilbert space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence provide a flexible quantum interconnect to bridge multiparticle protocols of quantum information with multidegree-of-freedom ones, with possible applications in future quantum networking5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum joining concept and implementation schemes.
Figure 2: Schematics of the photon quantum joining apparatus.
Figure 3: Experimental set-up used to implement and test the quantum joining.
Figure 4: Experimental results and model predictions.

Similar content being viewed by others

References

  1. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  ADS  Google Scholar 

  2. O'Brien, J. L., Furusawa, A. & Vucković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  3. Straupe, S. & Kulik, S. Quantum optics: the quest for higher dimensionality. Nature Photon. 4, 585–586 (2010).

    Article  ADS  Google Scholar 

  4. Pile, D. How many bits can a photon carry? Nature Photon. 6, 14–15 (2012).

    Article  ADS  Google Scholar 

  5. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  6. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  7. Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  8. Yao, X. C. et al. Observation of eight-photon entanglement. Nature Photon. 6, 225–228 (2012).

    Article  ADS  Google Scholar 

  9. Mair, A., Alipasha, V., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  10. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article  ADS  Google Scholar 

  11. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    Article  ADS  Google Scholar 

  12. Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Phys. 5, 134–140 (2009).

    Article  ADS  Google Scholar 

  13. Ceccarelli, R., Vallone, G., De Martini, F., Mataloni, P. & Cabello, A. Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett. 103, 160401 (2009).

    Article  ADS  Google Scholar 

  14. Nagali, E. et al. Experimental optimal cloning of four-dimensional quantum states of photons. Phys. Rev. Lett. 105, 73602 (2010).

    Article  ADS  Google Scholar 

  15. Gao, W. B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).

    Article  ADS  Google Scholar 

  16. Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andresson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nature Phys. 7, 677–680 (2011).

    Article  ADS  Google Scholar 

  17. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  18. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  19. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  20. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  21. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  22. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  23. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001).

    Article  ADS  Google Scholar 

  24. Pittman, T. B., Fitch, M. J., Jacobs, B. C. & Franson, J. D. Experimental controlled-not logic gate for single photons in the coincidence basis. Phys. Rev. A 68, 032316 (2003).

    Article  ADS  Google Scholar 

  25. Gasparoni, S., Pan, J. W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-not gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).

    Article  ADS  Google Scholar 

  26. Zhao, Z. et al. Experimental demonstration of a nondestructive controlled-not quantum gate for two independent photon qubits. Phys. Rev. Lett. 94, 030501 (2005).

    Article  ADS  Google Scholar 

  27. Sansoni, L. et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010).

    Article  ADS  Google Scholar 

  28. Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. H. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nature Photon. 6, 777–781 (2012).

    Article  ADS  Google Scholar 

  29. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  30. Eibl, M. et al. Experimental observation of four-photon entanglement from parametric down-conversion. Phys. Rev. Lett. 90, 200403 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 7th Framework Programme of the European Commission, within the Future Emerging Technologies programme, under grant No. 255914, PHORBITECH, and by the Italian Ministry for Education, University and Research, within the Futuro in Ricerca programme, under grant HYTEQ.

Author information

Authors and Affiliations

Authors

Contributions

L.M., with contributions from F.S. and E.S., developed the qubit joining/splitting concept and the corresponding optical schemes. C.V., N.S. and F.S. designed the experimental layout and methodology and, with L.A., carried out the experiments. N.S., C.V. and F.S. developed the model of partial photon distinguishability. All authors discussed the results and participated in preparing the manuscript.

Corresponding authors

Correspondence to Fabio Sciarrino or Lorenzo Marrucci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitelli, C., Spagnolo, N., Aparo, L. et al. Joining the quantum state of two photons into one. Nature Photon 7, 521–526 (2013). https://doi.org/10.1038/nphoton.2013.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing