Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer

Abstract

Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells1,2 and dye-sensitized solar cells (DSSCs)3,4 are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru(II) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm−2, the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of >12% under 35.5 mW cm−2 simulated sunlight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of sensitizers, absorption and emission of DX1 and BD, and time-resolved emission measurements.
Figure 2: Energy diagram of the components and device performance of the sensitizers.
Figure 3: Tandem cell structure and photocurrent JV characteristics of the optimized tandem DSSCs.

Similar content being viewed by others

References

  1. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  ADS  Google Scholar 

  2. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  Google Scholar 

  3. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  ADS  Google Scholar 

  4. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  ADS  Google Scholar 

  5. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  ADS  Google Scholar 

  6. Xia, Y. et al. Photocurrent response wavelength up to 1.1 µm from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative. Appl. Phys. Lett. 89, 081106 (2006).

    Article  ADS  Google Scholar 

  7. Nazeeruddin, M. K. et al. Combined experimental and DFT–TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005).

    Article  Google Scholar 

  8. Nazeeruddin, M. K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001).

    Article  Google Scholar 

  9. Onozawa-Komatsuzaki, N. et al. Near-IR dye-sensitized solar cells using a new type of ruthenium complexes having 2,6-bis(quinolin-2-yl)pyridine derivatives. Solar Ener. Mater. Solar Cells 95, 310–314 (2011).

    Article  Google Scholar 

  10. Yanagida, M. et al. Panchromatic sensitization of nanocrystalline TiO2 with cis-bis(4-carboxy-2-[2′-(4′-carboxypyridyl)]quinoline)bis(thiocyanato-N)ruthenium(II). Inorg. Chem. 42, 7921–7931 (2003).

    Article  Google Scholar 

  11. Funaki, T. et al. Synthesis of a new class of cyclometallated ruthenium(II) complexes and their application in dye-sensitized solar cells. Inorg. Chem. Commun. 12, 842–845 (2009).

    Article  Google Scholar 

  12. Barolo, C. et al. Synthesis, characterization, and DFT–TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand. Inorg. Chem. 45, 4642–4653 (2006).

    Article  Google Scholar 

  13. Altobello, S. et al. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J. Am. Chem. Soc. 127, 15342–15343 (2005).

    Article  Google Scholar 

  14. Yamaguchi, T., Miyabe, T., Ono, T. & Arakawa, H. Synthesis of novel β-diketonate bis(bipyridyl) Os(II) dyes for utilization of infrared light in dye-sensitized solar cells. Chem. Commun. 46, 5802–5804 (2010).

    Article  Google Scholar 

  15. Gao, S., Islam, A., Numata, Y. & Han, L. A β-diketonato ruthenium(II) complex with high molar extinction coefficient for panchromatic sensitization of nanocrystalline TiO2 film. Appl. Phys. Express 3, 062301 (2010).

    Article  ADS  Google Scholar 

  16. Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complex (Academic Press, 1992).

    Google Scholar 

  17. Crosby, G. A. & Demas, J. N. Quantum efficiencies on transition metal complexes. II. Charge-transfer luminescence. J. Am. Chem. Soc. 93, 2841–2847 (1971).

    Article  Google Scholar 

  18. Sullivan, B. P., Calvert, J. M. & Meyer, T. J. Cistrans isomerism in (trpy)(PPh3)RuCl2. Comparisons between the chemical and physical properties of a cistrans isomeric pair. Inorg. Chem. 19, 1404–1407 (1980).

    Article  Google Scholar 

  19. McGlynn, S. P., Sunseri, R., Christodouleas, N. External heavy-atom spin–orbital coupling effect. I. The nature of the interaction. J. Chem. Phys. 37, 1818 (1962).

    Article  ADS  Google Scholar 

  20. McGlynn, S. P., Azumi, T. & Kinoshita, M. Molecular Spectroscopy of the Triplet State (Prentice-Hall, 1969).

    Google Scholar 

  21. Montalti, M., Credi, A., Prodi, L. & Gandolfi, M. T. Handbook of Photochemistry 3rd edn (CRC Press, 2006).

    Book  Google Scholar 

  22. Sauvé, G. et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. J. Phys. Chem. B 104, 6821–6836 (2000).

    Article  Google Scholar 

  23. Ghosh, S. et al. Electronic structures and absorption spectra of linkage isomers of trithiocyanato (4,4′,4′′-tricarboxy-2,2′:6,2′′-terpyridine) ruthenium(II) complexes: a DFT study. Inorg. Chem. 45, 7600–7611 (2006).

    Article  Google Scholar 

  24. Koops, S. E., O'Regan, B. C., Barnes, P. R. F. & Durrant, J. R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 4808–4818 (2009).

    Article  Google Scholar 

  25. Huang, S. Y., Schlichthörl, G., Nozik, A. J., Grätzel, M. & Frank, A. J. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576–2582 (1997).

    Article  Google Scholar 

  26. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  ADS  Google Scholar 

  27. Yanagida, M. et al. Optimization of tandem-structured dye-sensitized solar cell. Solar Ener. Mater. Solar Cells 94, 297–302 (2010).

    Article  Google Scholar 

  28. Durr, M., Bamedi, A., Yasuda, A. & Nelles, G. Tandem dye-sensitized solar cell for improved power conversion efficiencies. Appl. Phys Lett. 84, 3397–3399 (2004).

    Article  ADS  Google Scholar 

  29. Kubo, W., Sakamoto, A., Kitamura, T., Wada, Y. & Yanagida, S. Dye-sensitized solar cells: improvement of spectral response by tandem structure. J. Photochem. Photobiol. A 164, 33–39 (2004).

    Article  Google Scholar 

  30. Honda, S., Ohkita, H., Benten, H. & Ito, S. Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem. Commun. 46, 6596–6598 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Hamamatsu Photonics K.K. for help with photophysical measurements. This work was supported by a Funding Program for World Leading Innovative R&D on Science and Technology (FIRST Program) on Organic Photovoltaics, and by Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists (22-10095).

Author information

Authors and Affiliations

Authors

Contributions

T. Ki. and H.S. initiated the work and designed the research. T. Ki. synthesized the DX1 and performed measurements. J.T.D., S.U. and T. Ku. provided technical advice on the device design. All authors performed and analysed the experiments. T. Ki. wrote the text with the assistance of H.S.

Corresponding author

Correspondence to Hiroshi Segawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, T., Dy, J., Uchida, S. et al. Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nature Photon 7, 535–539 (2013). https://doi.org/10.1038/nphoton.2013.136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing