Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers

Abstract

A low operating energy is needed for nanocavity lasers designed for on-chip photonic network applications. On-chip nanocavity lasers must be driven by current because they act as light sources driven by electronic circuits. Here, we report the high-speed direct modulation of a lambda-scale embedded active region photonic-crystal (LEAP) laser that holds three records for any type of laser operated at room temperature: a low threshold current of 4.8 µA, a modulation current efficiency of 2.0 GHz µA−0.5 and an operating energy of 4.4 fJ bit−1. Five major technologies make this performance possible: a compact buried heterostructure, a photonic-crystal nanocavity, a lateral p–n junction realized by ion implantation and thermal diffusion, an InAlAs sacrificial layer and current-blocking trenches. We believe that an output power of 2.17 µW and an operating energy of 4.4 fJ bit−1 will enable us to realize on-chip photonic networks in combination with the recently developed highly sensitive receivers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the current blocking trenches on the LEAP lasers.
Figure 2: Schematic and SEM images of LEAP lasers.
Figure 3: Static characteristics of the LEAP lasers.
Figure 4: Small signal responses of the LEAP lasers.
Figure 5: Large signal modulations of the LEAP lasers.
Figure 6: BERs of LEAP lasers.

Similar content being viewed by others

References

  1. Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J. & Carlson, R. O. Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366–368 (1962).

    Article  ADS  Google Scholar 

  2. Nathan, M. I., Dumke, W. P., Burns, G., Dill, F. H. Jr & Lasher, G. Stimulated emission of radiation from GaAs p–n junctions. Appl. Phys. Lett. 1, 62–64 (1962).

    Article  ADS  Google Scholar 

  3. Rediker, R. H. et al. Semiconductor maser of GaAs. Appl. Phys. Lett. 1, 91–92 (1962).

    ADS  Google Scholar 

  4. Hayashi, I., Panish, M. B., Foy, P. W. & Sumski, S. Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109–111 (1970).

    Article  ADS  Google Scholar 

  5. Alferov, Zh. I. et al. Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and realization of continuous emission at room temperature. Fizika i Tekhnika Poluprovodnikov 4, 1826–1829 (1970).

    Google Scholar 

  6. Casey, H. C. Jr, Somekh, S. & Ilegems, M. Room-temperature operation of low-threshold separate-confinement heterostructure injection laser with distributed feedback. Appl. Phys. Lett. 27, 142–144 (1975).

    Article  ADS  Google Scholar 

  7. Mikami, O. 1.55 µm GaInAsP/InP distributed feedback lasers. Jpn J. Appl. Phys. 20, L488–L490 (1981).

    Article  ADS  Google Scholar 

  8. Utaka, K., Akiba, S., Sakai, K. & Matsushima, Y. Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57 µm. Electron. Lett. 17, 961–963 (1981).

    Article  Google Scholar 

  9. Matsuoka, T., Nagai, H., Itaya, Y., Noguchi, Y., Suzuki, Y. & Ikegami, T. CW operation of DFB-BH GaInAsP/InP lasers in 1.5 µm wavelength region. Electron. Lett. 18, 27–28 (1982).

    Article  Google Scholar 

  10. Soda, H., Iga, K., Kitahara, C. & Suematsu, Y. GaInAsP/InP surface emitting injection lasers. Jpn J. Appl. Phys. 18, 2329–2330 (1979).

    Article  ADS  Google Scholar 

  11. Yang, G. M., MacDougal, M. H. & Dapkus, P. D. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31, 886–888 (1995).

    Article  Google Scholar 

  12. Naone, R. L. et al. Monolithic GaAs-based 1.3 µm VCSEL directly-modulated at 10 Gb/s. Proceedings of CLEO 2001, paper CPD13-1 (2001).

    Google Scholar 

  13. Magen, N., Kolodny, A., Weiser, U. & Shamir, N. Interconnect-power dissipation in a microprocessor. Proceedings of System Level Interconnect Prediction 2004, paper 1–2; available at http://www.sliponline.org/SLIP04/index.shtml (2004).

    Google Scholar 

  14. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  15. Park, H. G. et al. Characteristics of electrically driven two-dimensional photonic crystal lasers. IEEE J. Quantum Electron. 41, 1131–1141 (2005).

    Article  ADS  Google Scholar 

  16. Nomura, M. et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006).

    Article  ADS  Google Scholar 

  17. Kim, Y. K., Elarde, V. C., Long, C. M., Coleman, J. J. & Choquette, K. D. Electrically injected InGaAs/GaAs photonic crystal membrane light emitting microcavity with spatially localized gain. J. Appl. Phys. 104, 123103 (2008).

    Article  ADS  Google Scholar 

  18. Matsuo, S. et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nature Photon. 4, 648–654 (2010).

    Article  ADS  Google Scholar 

  19. Matsuo, S. et al. 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. Opt. Express 19, 2242–2250 (2011).

    Article  ADS  Google Scholar 

  20. Takeda, K. et al. High-temperature operation of photonic-crystal lasers for on-chip optical interconnection. IEICE Trans. Electron. E95-C, 1244–1251 (2012).

    Article  ADS  Google Scholar 

  21. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  22. Hofmann, W. H., Moser, P. & Bimberg, D. Energy-efficient VCSELs for interconnects. IEEE Photon. J. 4, 652–656 (2012).

    Article  ADS  Google Scholar 

  23. Matsuo, S. et al. Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser. Opt. Express 20, 3773–3780 (2012).

    Article  ADS  Google Scholar 

  24. Ellis, B. et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nature Photon. 5, 297–300 (2011).

    Article  ADS  Google Scholar 

  25. Kang, Y. et al. High performance Ge/Si avalanche photodiodes development in Intel. Proceedings of OFC 2011, paper OWZ1 (2011).

    Google Scholar 

  26. Shinya, A., Mitsugi, S., Kuramochi, E. & Notomi, M. Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate. Opt. Express 14, 12394–12400 (2006).

    Article  ADS  Google Scholar 

  27. Nozaki, K. et al. First demonstration of 4-bit, 40-Gb/s optical RAM chip using integrated photonic crystal nanocavities. Proceedings of International Conference on Photonics in Switching (PS), paper Fr-F36-O13 (2012).

    Google Scholar 

  28. Björk, G., Karlsson, A. & Yamamoto, Y. On the linewidth of microcavity lasers. Appl. Phys. Lett. 60, 304–306 (1992).

    Article  ADS  Google Scholar 

  29. Sato T. et al. 10-Gbit/s direct modulation of optically pumped InGaAlAs multiple-quantum-well photonic-crystal nanocavity laser up to 100 °C. Proceedings of IPRM2012, paper Tu-3D.3 (2012).

    Google Scholar 

  30. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).

    Google Scholar 

  31. Tucker, R. S., Wiesenfeld, J. M., Downey, P. M. & Bowers, J. E. Propagation delays and transition times in pulse-modulated semiconductor lasers. Appl. Phys. Lett. 48, 1707–1709 (1986).

    Article  ADS  Google Scholar 

  32. International Technology Roadmap for Semiconductors (2011); available at http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Interconnect.pdf.

Download references

Acknowledgements

The authors thank K. Ishibashi and Y. Shouji for fabricating the devices. Part of this work was supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Contributions

K.T. and S.M. performed the measurements and wrote the manuscript. K.T., A.S., K.N. and M.N. designed the devices. H.T. and T.K. carried out the numerical simulations. K.T., T.S., W.K., K.H. and S.M. fabricated the devices. S.M. led the project.

Corresponding author

Correspondence to Koji Takeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, K., Sato, T., Shinya, A. et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nature Photon 7, 569–575 (2013). https://doi.org/10.1038/nphoton.2013.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing