Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum teleportation using a light-emitting diode

Abstract

Teleportation of optical qubits can enable reliable logic operations in massively parallel quantum computers, as well as the formation of secure quantum networks. Photon teleportation has previously used laser-generated entangled photons created in random quantities. However, the practical complexities of the generating scheme coupled with errors caused by multipair emission have complicated its deployment in useful quantum information technology. Here, we demonstrate teleportation of single photonic qubits, mediated by individual pairs of entangled photons generated by an electrically driven entangled light source realized by embedding a single semiconductor quantum dot within a light-emitting diode. Teleportation is achieved with six general input states, with asymmetrically distributed fidelities, and an average fidelity above the limit possible with classical light. A theoretical framework is created that reproduces our experiments with close agreement. The unique sub-Poissonian nature of our photonic teleporter together with its electrical operation will help lift the complexity restriction of future quantum information applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and ELED characteristics.
Figure 2: Third-order intensity correlations g(3) for antidiagonal polarized control photon Ac.
Figure 3: Fidelity of teleported qubits.

Similar content being viewed by others

References

  1. Bennett, C. H. & Brassard, G. in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, 175–179 (IEEE Press, 1984).

    Google Scholar 

  2. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  3. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  4. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  5. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  6. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    Article  ADS  Google Scholar 

  7. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    Article  ADS  Google Scholar 

  8. Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  Google Scholar 

  9. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. Halder, M. et al. Entangling independent photons by time measurement. Nature Phys. 3, 692–695 (2007).

    Article  ADS  Google Scholar 

  11. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  12. Fattal, D., Diamanti, E., Inoue, K. & Yamamoto, Y. Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett. 92, 037904 (2004).

    Article  ADS  Google Scholar 

  13. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  14. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  ADS  Google Scholar 

  15. Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

    Article  ADS  Google Scholar 

  16. Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).

    Article  ADS  Google Scholar 

  18. Scarani, V., de Riedmatten, H., Marcikic, I., Zbinden, H. & Gisin, N. Four-photon correction in two-photon Bell experiments. Eur. Phys. J. D 32, 129–138 (2005).

    Article  ADS  Google Scholar 

  19. Gao, G. A. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

    Article  ADS  Google Scholar 

  20. Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849 (2004).

    Article  ADS  Google Scholar 

  21. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  22. Bennett, C. H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  23. Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  24. Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    Article  MathSciNet  Google Scholar 

  25. Koashi, M. Efficient quantum key distribution with practical sources and detectors. Preprint at http://arxiv.org/abs/quant-ph/0609180 (2006).

  26. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  ADS  Google Scholar 

  27. Bennett, A. J. et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nature Phys. 6, 947–950 (2010).

    Article  ADS  Google Scholar 

  28. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

    Article  ADS  Google Scholar 

  29. Young, R. J. et al. Bell-inequality violation with a triggered photon-pair source. Phys. Rev. Lett. 102, 030406 (2009).

    Article  ADS  Google Scholar 

  30. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Processes and Applications (Wiley, 1992).

    Google Scholar 

  31. Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial financial support through the European Union Initial Training Network Spin Effects for Quantum Optoelectronics (SPIN-OPTRONICS) and the Seventh Framework Programme Future and Emerging Technologies Collaborative Project Quantum Interfaces, Sensors and Communication Based on Entanglement (Q-ESSENCE), the United Kingdom Engineering and Physical Sciences Research Council and the Cambridge Overseas Trust. The authors also thank T. Rudolph for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Samples were grown by I.F. and D.A.R. and processed by J.S.-S., C.L.S. and J.N. Optical measurements were carried out by J.N. and R.M.S. Calculations were performed by K.C.A.C and M.L. A.J.S. guided the work. All authors discussed the experiments, results and the interpretation of the results. R.M.S., J.N., K.C.A.C. and M.L. wrote the manuscript, with contributions from the other authors.

Corresponding authors

Correspondence to R. M. Stevenson or A. J. Shields.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, J., Stevenson, R., Chan, K. et al. Quantum teleportation using a light-emitting diode. Nature Photon 7, 311–315 (2013). https://doi.org/10.1038/nphoton.2013.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing