Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Towards high-capacity fibre-optic communications at the speed of light in vacuum

Abstract

Wide-bandwidth signal transmission with low latency is emerging as a key requirement in a number of applications, including the development of future exaflop-scale supercomputers, financial algorithmic trading and cloud computing1,2,3. Optical fibres provide unsurpassed transmission bandwidth, but light propagates 31% slower in a silica glass fibre than in vacuum, thus compromising latency. Air guidance in hollow-core fibres can reduce fibre latency very significantly. However, state-of-the-art technology cannot achieve the combined values of loss, bandwidth and mode-coupling characteristics required for high-capacity data transmission. Here, we report a fundamentally improved hollow-core photonic-bandgap fibre that provides a record combination of low loss (3.5 dB km−1) and wide bandwidth (160 nm), and use it to transmit 37 × 40 Gbit s−1 channels at a 1.54 µs km−1 faster speed than in a conventional fibre. This represents the first experimental demonstration of fibre-based wavelength division multiplexed data transmission at close to (99.7%) the speed of light in vacuum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication and characterization of wide-bandwidth HC-PBGF.
Figure 2: Low-crosstalk multimode propagation through a HC-PBGF.
Figure 3: Confirmation of single-mode, low-latency transmission.
Figure 4: 1.48 Tbit s−1 wavelength division multiplexing transmission experiment.

Similar content being viewed by others

References

  1. Papadopoulos, G. How to design and build your very own exascale computer. Proceedings of the Optical Fiber Communication Conference (OFC), Plenary Talk (Optical Society of America, 2012).

    Google Scholar 

  2. Freiberger, M., Templeton, D. & Mercado, E. in Proceedings of the National Fiber Optic Engineers Conference (NFOEC), paper NTu2E.1 (Optical Society of America, 2012).

    Google Scholar 

  3. Lam, C. et al. Fiber optic communication technologies: what's needed for datacenter network operations. IEEE Commun. Mag. 48, 32–39 (2010).

    Article  Google Scholar 

  4. Amdahl, G. M. in Proceedings of the 1967 Spring Joint Computer Conference 483–485 (ACM, 1967).

    Google Scholar 

  5. Arvind, A. & Iannucci, R. in Parallel Computing in Science and Engineering Vol. 295 Lecture Notes in Computer Science (eds Dierstein, R., Müller-Wichards, D. & Wacker, H.-M.) 61–88 (Springer, 1988).

    Book  Google Scholar 

  6. Allongue, B. et al. The electronics system of the ALFA forward detector for luminosity measurements in ATLAS. J. Instrum. 7, C02034 (2012).

    Article  Google Scholar 

  7. Stenner, M. D., Gauthier, D. J. & Neifeld, M. A. The speed of information in a ‘fast-light’ optical medium. Nature 425, 695–698 (2003).

    Article  ADS  Google Scholar 

  8. Birks, T. A., Roberts, P. J., Russel, P. S. J., Atkin, D. M. & Shepherd, T. J. Full 2-D photonic bandgaps in silica/air structures. Electron. Lett. 31, 1941–1943 (1995).

    Article  Google Scholar 

  9. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  10. Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    Article  ADS  Google Scholar 

  11. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  MathSciNet  Google Scholar 

  12. Essiambre, R. J. & Tkach, R. W. Capacity trends and limits of optical communication networks. Proc. IEEE 100, 1035–1055 (2012).

    Article  Google Scholar 

  13. Ellis, A. D., Jian, Z. & Cotter, D. Approaching the non-linear shannon limit. J. Lightwave Technol. 28, 423–433 (2010).

    Article  ADS  Google Scholar 

  14. Roberts, P. J. et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

    Article  ADS  Google Scholar 

  15. Mangan, B. J. et al. in Proceedings of the Optical Fiber Communication Conference (OFC) paper PD24 (Optical Society of America, 2004).

    Google Scholar 

  16. West, J. A., Smith, C. M., Borrelli, N. F., Allan, D. C. & Koch, K. W. Surface modes in air-core photonic band-gap fibers. Opt. Express 12, 1485–1496 (2004).

    Article  ADS  Google Scholar 

  17. Saitoh, K., Mortensen, N. A. & Koshiba, M. Air-core photonic band-gap fibers: the impact of surface modes. Opt. Express 12, 394–400 (2004).

    Article  ADS  Google Scholar 

  18. Poletti, F., Broderick, N. G. R., Richardson, D. J. & Monro, T. M. The effect of core asymmetries on the polarization properties of hollow core photonic band gap fibers. Opt. Express 13, 9115–9124 (2005).

    Article  ADS  Google Scholar 

  19. Amezcua-Correa, R., Broderick, N. G. R., Petrovich, M. N., Poletti, F. & Richardson, D. J. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Opt. Express 15, 17577–17586 (2007).

    Article  ADS  Google Scholar 

  20. Amezcua-Correa, R. et al. Control of surface modes in low loss hollow-core photonic bandgap fibers. Opt. Express 16, 1142–1149 (2008).

    Article  ADS  Google Scholar 

  21. Hansen, T. P. et al. Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling. J. Lightwave Technol. 22, 11–15 (2004).

    Article  ADS  Google Scholar 

  22. Nicholson, J. W. et al. Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber. Opt. Express 20, 20494–20505 (2012).

    Article  ADS  Google Scholar 

  23. Wheeler, N. V. et al. in Proceedings of the Optical Fiber Communications Conference (OFC) paper PDP5A.2 (Optical Society of America, 2012).

    Google Scholar 

  24. Fokoua, E. N., Poletti, F. & Richardson, D. J. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. Opt. Express 20, 20980–20991 (2012).

    Article  ADS  Google Scholar 

  25. Lyngso, J. K., Mangan, B. J., Jakobsen, C. & Roberts, P. J. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 µm. Opt. Express 17, 23468–23473 (2009).

    Article  ADS  Google Scholar 

  26. Petrovich, M. N., Poletti, F., Van Brakel, A. & Richardson, D. J. Robustly single mode hollow core photonic bandgap fiber. Opt. Express 16, 4337–4346 (2008).

    Article  ADS  Google Scholar 

  27. Euser, T. G. et al. Dynamic control of higher-order modes in hollow-core photonic crystal fibers. Opt. Express 16, 17972–17981 (2008).

    Article  ADS  Google Scholar 

  28. Nicholson, J. W., Yablon, A. D., Fini, J. M. & Mermelstein, M. D. Measuring the modal content of large-mode-area fibers. IEEE J. Sel. Top. Quantum Electron. 15, 61–70 (2009).

    Article  ADS  Google Scholar 

  29. Peucheret, C., Zsigri, B., Hansen, T. P. & Jeppesen, P. 10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm. Electron. Lett. 41, 27–29 (2005).

    Article  Google Scholar 

  30. Petrovich, M. N. et al. in Proceedings of the European Conference and Exhibition on Optical Communication paper Th.3.A.5 (Optical Society of America, 2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the EU 7th Framework Programme (grant agreement 228033; MODE-GAP) and by the UK EPSRC (grants EP/I01196X/1 (Hyperhighway) and EP/H02607X/1). F.P. and R.S. acknowledge support from a Royal Society University Research Fellowship and an EU FP7 Marie-Curie Fellowship (255368, TOP CLASS), respectively. Z.L. acknowledges support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

F.P. and E.N.F. designed the fibre and modelled its loss contributions. N.V.W., M.N.P., N.B. and J.R.H. fabricated and characterized the fibre. R.S. conducted the ToF and data transmission experiments. D.R.G., Z.L. and F.P. conducted the S2 modal characterization. F.P., M.N.P. and D.J.R. contributed to the genesis of the idea and provided overall technical leadership across all aspects of the research. F.P., R.S. and D.J.R. wrote the manuscript.

Corresponding author

Correspondence to F. Poletti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poletti, F., Wheeler, N., Petrovich, M. et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum. Nature Photon 7, 279–284 (2013). https://doi.org/10.1038/nphoton.2013.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing