Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optics of photonic quasicrystals

Subjects

Abstract

The physics of periodic systems are of fundamental importance and result in various phenomena that govern wave transport and interference. However, deviations from periodicity may result in higher complexity and give rise to a number of surprising effects. One such deviation can be found in the field of optics in the realization of photonic quasicrystals, a class of structures made from building blocks that are arranged using well-designed patterns but lack translational symmetry. Nevertheless, these structures, which lie between periodic and disordered structures, still show sharp diffraction patterns that confirm the existence of wave interference resulting from their long-range order. In this Review, we discuss the beautiful physics unravelled in photonic quasicrystals of one, two and three dimensions, and describe how they can influence optical transmission and reflectivity, photoluminescence, light transport, plasmonics and laser action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-resonant 1D Fibonacci quasicrystalline structure.
Figure 2: Resonant 1D Fibonacci quasicrystalline structure.
Figure 3: 3D photonic quasicrystal and its transmission properties.
Figure 4: Disorder-enhanced transport and localization in 2D photonic quasicrystals.
Figure 5: Transmission properties of SPP-based quasiperiodic plasmonic hole arrays.
Figure 6: Optical scattering properties of localized surface plasmon-based quasicrystal plasmonic structures.
Figure 7: Lasing action from a 2D photonic quasicrystal.

Similar content being viewed by others

References

  1. Carter, W. H. & Wolf, E. Coherence properties of lambertian and non-lambertian sources. J. Opt. Soc. Am. 65, 1067–1071 (1975).

    ADS  Google Scholar 

  2. John, S. Strong localization of photons in certain dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  3. Yablonovitch, E. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Google Scholar 

  4. Joannopoulos, J. D., Meade, R. & Winn, J. Photonic Crystals: Molding the Glow of Light (Princeton Univ., 1995).

    MATH  Google Scholar 

  5. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Google Scholar 

  6. Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    ADS  Google Scholar 

  7. Ebbesen, T. W., Lezec, H., Ghaemi, H., Thio, T. & Wolff, P. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    ADS  Google Scholar 

  8. van Albada, M. P. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985).

    Article  ADS  Google Scholar 

  9. Wolf, P. E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985).

    Article  ADS  Google Scholar 

  10. Akkermans, E. & Maynard, R. Weak localization of waves. J. Physique Lett. 46, L1045–L1053 (1985).

    Google Scholar 

  11. Baleine, E. & Dogariu, A. Variable coherence scattering microscopy. Phys. Rev. Lett. 95, 193904 (2005).

    ADS  Google Scholar 

  12. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    ADS  Google Scholar 

  13. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

    ADS  Google Scholar 

  14. Cheng, Z., Savit, R. & Merlin, R. Structure and electronic properties of Thue–Morse lattices. Phys. Rev. B 37, 4375–4382 (1988).

    ADS  Google Scholar 

  15. Liu, N. Propagation of light waves in Thue–Morse dielectric multilayers. Phys. Rev. B 55, 3543–3547 (1997).

    ADS  Google Scholar 

  16. Dulea, M., Johansson, M. & Riklund, R. Localization of electrons and electromagnetic waves in a deterministic aperiodic system. Phys. Rev. B 45, 105–114 (1992).

    ADS  Google Scholar 

  17. Steurer, W. & Sutter-Widmer, D. Photonic and phononic quasicrystals. J. Phys. D 40, R229–R247 (2007).

    ADS  Google Scholar 

  18. Maciá, E. Exploiting aperiodic designs in nanophotonic devices. Rep. Prog. Phys. 75, 036502 (2012).

    ADS  Google Scholar 

  19. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    ADS  Google Scholar 

  20. Levine, D. & Steinhardt, P. J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    ADS  Google Scholar 

  21. Kohmoto, M., Sutherland, B. & Iguchi, K. Localization of optics: Quasiperiodic media. Phys. Rev. Lett. 58, 2436–2438 (1987).

    ADS  Google Scholar 

  22. Albuquerque, E. L. & Cottam, M. G. Theory of elementary excitations in quasiperiodic structures. Phys. Rep. 376, 225–337 (2003).

    ADS  Google Scholar 

  23. Janot, C. Quasicrystals: A Primer 2nd edn (Oxford Univ., 1994).

    MATH  Google Scholar 

  24. Matsui, T., Agrawal, A., Nahata, A. & Vardeny, Z. V. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446, 517–521 (2007).

    ADS  Google Scholar 

  25. Gellermann, W., Kohmoto, M., Sutherland, B. & Taylor, P. C. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72, 633–636 (1994).

    ADS  Google Scholar 

  26. Hattori, T., Tsurumachi, N., Kawato, S. & Nakatsuka, H. Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B 50, 4220–4223 (1994).

    ADS  Google Scholar 

  27. Hendrickson, J. et al. Excitonic polaritons in Fibonacci quasicrystals. Opt. Express 16, 15382–15387 (2008).

    ADS  Google Scholar 

  28. Werchner, M. et al. One dimensional resonant Fibonacci quasicrystals: Noncanonical linear and canonical nonlinear effects. Opt. Express 17, 6813–6828 (2009).

    ADS  Google Scholar 

  29. Valsakumar, M. C. & Kumar, V. Diffraction from a quasi-crystalline chain. Pramana 26, 215–221 (1986).

    ADS  Google Scholar 

  30. Lin, Z., Kubo, H. & Goda, M. Self-similarity and scaling of wave function for binary quasiperiodic chains associated with quadratic irrationals. Z. Phy. B 98, 111–118 (1995).

    ADS  Google Scholar 

  31. Bombieri, E. & Taylor, J. E. Which distributions of matter diffract? An initial investigation. J. Physique 47, C3-19–C3-28 (1986).

    MathSciNet  MATH  Google Scholar 

  32. Poddubny, A., Pilozzi, L., Voronov, M. & Ivchenko, E. Resonant Fibonacci quantum well structures in one dimension. Phys. Rev. B 77, 113306 (2008).

    ADS  Google Scholar 

  33. Lin, Z., Goda, M. & Kubo, H. A family of generalized Fibonacci lattices: self-similarity and scaling of the wavefunction. J. Phys. A 28, 853–866 (1995).

    ADS  MathSciNet  Google Scholar 

  34. Aviram, I. The diffraction spectrum of a general family of linear quasiperiodic arrays. J. Phys. A 19, 3299–3312 (1986).

    ADS  MATH  Google Scholar 

  35. Dharma-Wardana, M. W. C., MacDonald, A. H., Lockwood, D. J., Baribeau, J. M. & Houghton, D. C. Raman scattering in Fibonacci superlattices. Phys. Rev. Lett. 58, 1761–1764 (1987).

    ADS  Google Scholar 

  36. Peng, R. W. et al. Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Appl. Phys. Lett. 80, 3063–3065 (2002).

    ADS  Google Scholar 

  37. Kaliteevski, M. A., Nikolaev, V. V., Abram, R. A. & Brand, S. Bandgap structure of optical Fibonacci lattices after light diffraction. Opt. Spectrosc. 91, 109–118 (2001).

    ADS  Google Scholar 

  38. Huang, X. Q., Jiang, S. S., Peng, R. W. & Hu, A. Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers. Phys. Rev. B 63, 245104 (2001).

    ADS  Google Scholar 

  39. Sutherland, B. & Kohmoto, M. Resistance of a one-dimensional quasicrystal: Power-law growth. Phys. Rev. B 36, 5877–5886 (1987).

    ADS  MathSciNet  Google Scholar 

  40. Poddubny, A. Wood anomalies in resonant photonic quasicrystals. Phys. Rev. B 83, 075106 (2011).

    ADS  Google Scholar 

  41. Wang, X., Grimm, U. & Schreiber, M. Trace and antitrace maps for aperiodic sequences: Extensions and applications. Phys. Rev. B 62, 14020–14031 (2000).

    ADS  Google Scholar 

  42. Maciá, E. Physical nature of critical modes in Fibonacci quasicrystals. Phys. Rev. B 60, 10032–10036 (1999).

    ADS  Google Scholar 

  43. Fujiwara, T., Kohmoto, M. & Tokihiro, T. Multifractal wave functions on a Fibonacci lattice Phys. Rev. B 40, 7413–7416 (1989).

    ADS  Google Scholar 

  44. Dal Negro, L. et al. Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 90, 055501 (2003).

    ADS  Google Scholar 

  45. Ghulinyan, M. et al. Light-pulse propagation in Fibonacci quasicrystals. Phys. Rev. B 71, 094204 (2005).

    ADS  Google Scholar 

  46. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).

    ADS  Google Scholar 

  47. Ivchenko, E. L. Excitonic polaritons in periodic quantum-well structures. Sov. Phys. Sol. State 33, 1344–1349 (1991).

    Google Scholar 

  48. Prineas, J. P. et al. Exciton–polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiplequantumwell periodic structures. Phys. Rev. B 61, 13863–13872 (2000).

    ADS  Google Scholar 

  49. Sivachenko, A. Y., Raikh, M. E. & Vardeny, Z. V. Excitations in photonic crystals infiltrated with polarizable media. Phys. Rev. A 64, 013809 (2001).

    ADS  Google Scholar 

  50. Eradat, N., Sivachenko, A. Y., Raikh, M. E. & Vardeny, Z. V. Evidence for Braggoritons in opal photonic crystals infiltrated with highly polarizable dyes. Appl. Phys. Lett. 80, 3491–3493 (2002).

    ADS  Google Scholar 

  51. Deych, L., Erementchouk, M., Lisyansky, A., Ivchenko, E. & Voronov, M. Exciton luminescence in one-dimensional resonant photonic crystals: A phenomenological approach. Phys. Rev. B 76, 075350 (2007).

    ADS  Google Scholar 

  52. Lifshitz, R. The square Fibonacci tiling. J. Alloy. Compd. 342, 186–190 (2002).

    Google Scholar 

  53. Fu, X., Liu, Y., Cheng, B. & Zheng, D. Spectral structure of two-dimensional Fibonacci quasilattices. Phys. Rev. B 43, 10808–10814 (1991).

    ADS  Google Scholar 

  54. Dal Negro, L., Feng, N. & Gopinath, A. Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays. J. Opt. A 10, 064013 (2008).

    ADS  Google Scholar 

  55. Penrose, R. Pentaplexity: A class of non-periodic tilings of the plane. Math. Intell. 2, 32–37 (1979).

    MATH  Google Scholar 

  56. Kaliteevski, M. A. et al. Two-dimensional Penrose-tiled photonic quasicrystals: From diffraction pattern to band structure. Nanotechnol. 11, 274–280 (2000).

    ADS  Google Scholar 

  57. Kaliteevski, M. A. et al. Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals. J. Phys. A 13, 10459–10470 (2001).

    Google Scholar 

  58. Zoorob, M. E., Charlton, M. B. D., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000).

    ADS  Google Scholar 

  59. Chan, Y. S., Chan, C. T. & Liu, Z. Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956–959 (1998).

    ADS  Google Scholar 

  60. Zhang, X., Zhang, Z. Q. & Chan, C. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Phys. Rev. B 63, 081105 (2001).

    ADS  Google Scholar 

  61. Rechtsman, M., Jeong, H. C., Chaikin, P., Torquato, S. & Steinhardt, P. Optimized structures for photonic quasicrystals. Phys. Rev. Lett. 101, 073902 (2008).

    ADS  Google Scholar 

  62. Jurdik, E. et al. Quasiperiodic structures via atom-optical nanofabrication. Phys. Rev. B 69, 201102(R) (2004).

    ADS  Google Scholar 

  63. Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993–996 (2005).

    ADS  Google Scholar 

  64. Ledermann, A. et al. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nature Mater. 5, 942–945 (2006).

    ADS  Google Scholar 

  65. Wang, X., Ng, C. Y., Tam, W. Y., Chan, C. T. & Sheng, P. Large-area two-dimensional mesoscale quasi-crystals. Adv. Mater. 15, 1526–1528 (2003).

    Google Scholar 

  66. Guo, M., Xu, Z. & Wang, X. Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films. Langmuir 24, 2740–2745 (2008).

    Google Scholar 

  67. Harb, A. et al. Holographically formed three-dimensional Penrose-type photonic quasicrystal through a lab-made single diffractive optical element. Opt. Express 18, 20512–20517 (2010).

    ADS  Google Scholar 

  68. Shir, D. et al. Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric Penrose quasicrystal phase masks. Nano Lett. 8, 2236–2244 (2008).

    ADS  Google Scholar 

  69. Freedman, B. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006).

    ADS  Google Scholar 

  70. Freedman, B., Lifshitz, R., Fleischer, J. W. & Segev, M. Phason dynamics in nonlinear photonic quasicrystals. Nature Mater. 6, 776–781 (2007).

    ADS  Google Scholar 

  71. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    ADS  Google Scholar 

  72. Efremidis, N., Sears, S., Christodoulides, D., Fleischer, J. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002).

    ADS  Google Scholar 

  73. Mayou, D., Berger, C., Cyrot-Lackmann, F., Klein, T. & Lanco, P. Evidence for unconventional electronic transport in quasicrystals. Phys. Rev. Lett. 70, 3915–3918 (1993).

    ADS  Google Scholar 

  74. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Google Scholar 

  75. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    ADS  Google Scholar 

  76. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Google Scholar 

  77. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Google Scholar 

  78. Przybilla, F., Genet, C. & Ebbesen, T. W. Enhanced transmission through Penrose subwavelength hole arrays. Appl. Phys. Lett. 89, 121115 (2006).

    ADS  Google Scholar 

  79. Pacifici, D., Lezec, H. J., Sweatlock, L. A., Walters, R. J. & Atwater, H. A. Universal optical transmission features in periodic and quasiperiodic hole arrays. Opt. Express 16, 9222–9238 (2008).

    ADS  Google Scholar 

  80. Papasimakis, N., Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I. & Garciía de Abajo, F. J. Enhanced microwave transmission through quasicrystal hole arrays. Appl. Phys. Lett. 91, 081503 (2007).

    ADS  Google Scholar 

  81. Hao, R. et al. Exotic acoustic transmission through hard plates perforated with quasiperiodic subwavelength apertures. Europhys. Lett. 92, 24006 (2010).

    ADS  Google Scholar 

  82. Agrawal, A., Matsui, T., Vardeny, Z. V. & Nahata, A. Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays. J. Opt. Soc. Am. B 24, 2545–2555 (2007).

    ADS  Google Scholar 

  83. Bravo-Abad, J., Fernández-Domínguez, A., García-Vidal, F. & Martín-Moreno, L. Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes. Phys. Rev. Lett. 99, 203905 (2007).

    ADS  Google Scholar 

  84. Huang, F. M., Chen, Y., Garciía de Abajo, F. J. & Zheludev, N. I. Optical super-resolution through super-oscillations. J. Opt. A 9, S285–S288 (2007).

    Google Scholar 

  85. Huang, F. M., Kao, T. S., Fedotov, V. A., Chen, Y. & Zheludev, N. I. Nanohole array as a lens. Nano Lett. 8, 2469–2472 (2008).

    ADS  Google Scholar 

  86. Zijlstra, P. & Orrit, M. Single metal nanoparticles: Optical detection, spectroscopy and applications. Rep. Prog. Phys. 74, 106401 (2011).

    ADS  Google Scholar 

  87. Dal Negro, L. & Boriskina, S. V. Deterministic aperiodic nanostructures for photonics and plasmonics applications. Las. Photon. Rev. 6, 178–218 (2012).

    ADS  Google Scholar 

  88. Nguyen, T. D., Nahata, A. & Vardeny, Z. V. Measurement of surface plasmon correlation length differences using Fibonacci deterministic hole arrays. Opt. Express 20, 15222–15231 (2012).

    ADS  Google Scholar 

  89. Dal Negro, L. & Feng, N. N. Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. Opt. Express 15, 14396–14403 (2007).

    ADS  Google Scholar 

  90. Dong, J. W., Fung, K., Chan, C. & Wang, H. Z. Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles. Phys. Rev. B 80, 155118 (2009).

    ADS  Google Scholar 

  91. Dallapiccola, R., Gopinath, A., Stellacci, F. & Dal Negro, L. Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles. Opt. Express 16, 5544–5555 (2008).

    ADS  Google Scholar 

  92. Forestiere, C., Miano, G., Rubinacci, G. & Dal Negro, L. Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticle arrays. Phys. Rev. B 79, 085404 (2009).

    ADS  Google Scholar 

  93. Deng, Z. L., Li, Z. H., Dong, J. W. & Wang, H. Z. In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles. Plasmon. 6, 507–514 (2011).

    Google Scholar 

  94. Gopinath, A., Boriskina, S. V., Feng, N. N., Reinhard, B. M. & Dal Negro, L. Photonic–plasmonic scattering resonances in deterministic aperiodic structures. Nano Lett. 8, 2423–2431 (2008).

    ADS  Google Scholar 

  95. Lee, S. Y. et al. Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles. Proc. Natl Acad. Sci. USA 107, 12086–12090 (2010).

    ADS  Google Scholar 

  96. Gopinath, A., Boriskina, S. V., Reinhard, B. M. & Dal Negro, L. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt. Express 17, 3741–3753 (2009).

    ADS  Google Scholar 

  97. Gopinath, A., Boriskina, S. V., Yerci, S., Li, R. & Dal Negro, L. Enhancement of the 1.54 μm Er3+ emission from quasiperiodic plasmonic arrays. Appl. Phys. Lett. 96, 071113 (2010).

    ADS  Google Scholar 

  98. Siegman, A. E. Lasers (Univ. Science Books, 1986).

    Google Scholar 

  99. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    ADS  MATH  Google Scholar 

  100. Yariv, A. Quantum Electronics (Wiley, 1989).

    Google Scholar 

  101. Morthier, G. & Vankwikelberge, P. Handbook of Distributed Feedback Laser Diodes (Artech House, 1997).

    Google Scholar 

  102. Noda S. et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    ADS  Google Scholar 

  103. Wiersma, D. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    ADS  Google Scholar 

  104. Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    ADS  Google Scholar 

  105. Notomi, M., Suzuki, H. & Tamamura, T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett. 78, 1325–1327 (2001).

    ADS  Google Scholar 

  106. Shkunov, M. N. et al. Tunable, gap-state lasing in switchable directions for opal photonic crystals. Adv. Func. Mater. 12, 21–26 (2002).

    Google Scholar 

  107. Chan, Y. S., Chan, C. T. & Liu, Z. Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956–959 (1998).

    ADS  Google Scholar 

  108. Zhang, X., Zhang, Z. Q. & Chan, C. T. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Phys. Rev. B 63, 081105 (2001).

    ADS  Google Scholar 

  109. Bayindir, M., Cubukcu, E., Bulu, I. & Ozbay, E. Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice. Phys. Rev. B 63, 161104 (2001).

    ADS  Google Scholar 

  110. Notomi, M., Suzuki, H., Tamamura, T. & Edagawa, K. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Phys. Rev. Lett. 92, 123906 (2004).

    ADS  Google Scholar 

  111. Mahler, L. et al. Quasi-periodic distributed feedback laser. Nature Photon. 4, 165–169 (2010).

    ADS  Google Scholar 

  112. Nozaki, K. & Baba, T. Quasiperiodic photonic crystal microcavity lasers. Appl. Phys. Lett. 84, 4875–4877 (2004).

    ADS  Google Scholar 

  113. Kim, S.-K. et al. Photonic quasicrystal single-cell cavity mode. Appl. Phys. Lett. 86, 031101 (2005).

    ADS  Google Scholar 

  114. Nozaki, K. & Baba, T. Lasing characteristics of 12-fold symmetric quasi-periodic photonic crystal slab nanolasers. Jpn J. Appl. Phys. 45, 6087–6090 (2006).

    ADS  Google Scholar 

  115. Lifshitz, R., Arie, A. & Bahabad, A. Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett. 95, 133901 (2005).

    ADS  Google Scholar 

  116. Bratfalean, R. T., Peacock, A. C., Broderick, N. G. R., Gallo, K. & Lewen, R. Harmonic generation in a two-dimensional nonlinear quasi-crystal. Opt. Lett. 30, 424–426 (2005).

    ADS  Google Scholar 

  117. De Boissieu, M. Phason modes in quasicrystals. Phil. Mag. 88, 2295–2309 (2008).

    ADS  Google Scholar 

  118. Widom, M. Discussion of phasons in quasicrystals and their dynamics. Phil. Mag. 88, 2339–2350 (2008).

    ADS  Google Scholar 

  119. Clausen, C. A. B., Kivshar, Y. S., Bang, O. & Christiansen, P. L. Quasiperiodic envelope solitons. Phys. Rev. Lett. 83, 4740–4743 (1999).

    ADS  Google Scholar 

  120. Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008).

    ADS  Google Scholar 

  121. Chen, Z., Segev, M. & Christodoulides, D. N. Optical spatial solitons: Historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012).

    ADS  Google Scholar 

  122. Xue, J. et al. Surface plasmon enhanced transmission through planar gold quasicrystals fabricated by focused ion beam technique. Microelectron. Eng. 86, 1131–1133 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF-MRSEC programme at the University of Utah, grant No. DMR 11-21252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Valy Vardeny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardeny, Z., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nature Photon 7, 177–187 (2013). https://doi.org/10.1038/nphoton.2012.343

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing