Anderson localization of light

Journal name:
Nature Photonics
Year published:
Published online


Over the past decade, the Anderson localization of light and a wide variety of associated phenomena have come to the forefront of research. Numerous investigations have been made into the underlying physics of how disorder affects transport in a crystalline lattice incorporating disorder. The physics involved relies on the analogy between the paraxial equation for electromagnetic waves and the Schrödinger equation describing quantum phenomena. Experiments have revealed how wavefunctions evolve during the localization process, and have led to discoveries of new physics that are universal to wave systems incorporating disorder. This Review summarizes the phenomena associated with the transverse localization of light, with an emphasis on the history, new ideas and future exploration of the field.

At a glance


  1. Transition from ballistic transport to diffusive transport, and eventually to Anderson localization.
    Figure 1: Transition from ballistic transport to diffusive transport, and eventually to Anderson localization.

    a, Transverse localization scheme. A probe beam propagates in a photonic lattice with a controlled level of disorder. Without disorder, the beam exhibits ballistic transport; its width increases linearly with propagation distance (left). Under the influence of disorder, the beam becomes exponentially localized in the transverse plane, maintaining its mean width throughout propagation (right). bd, Ensemble-averaged intensity distribution at the output face of the lattice. The results reveal a gradual transition from ballistic transport (b), where the diffraction pattern reflects the lattice symmetry, to diffusion (c) in the presence of disorder (intensity profile has a Gaussian shape, plotted in logarithmic scale), and, at stronger disorder, to Anderson localization with exponentially decaying tails (d). Figure reproduced with permission from ref. 18, © 2007 NPG.

  2. Hyper-transport of a light beam propagating through fluctuating spatial disorder.
    Figure 2: Hyper-transport of a light beam propagating through fluctuating spatial disorder.

    ad, Ensemble-averaged shape of the beam exiting the medium (cross-sections displayed in a logarithmic scale, with their corresponding width Weff). a, Without disorder, the beam undergoes ballistic transport. b, When disorder is propagation-invariant, the beam displays Anderson localization, which is manifested in its exponential structure. c,d, When disorder evolves during propagation, the beam expands faster than it would in the ballistic transport regime. eh, Corresponding spatial power spectra of the beams displayed in panels ad. i, Simulation results showing the width of the ensemble-averaged power spectrum of the beams, undergoing ballistic transport (homogeneous medium; lower curve), localization (propagation-invariant disorder; middle curve) and hyper-transport (evolving disorder; upper curve). For ballistic transport, the spectral width is conserved. For localization, the spectrum initially expands but once localization is reached the width remains unchanged. In contrast, the spectrum of a beam undergoing hyper-transport expands continuously. Figure reproduced with permission from ref. 48, © 2012 APS.

  3. Simulations of the correlations between the positions of two particles co-localizing in a disordered lattice.
    Figure 3: Simulations of the correlations between the positions of two particles co-localizing in a disordered lattice.

    a, Particles are launched in adjacent sites, labelled 0 and 1. b,c, Correlation map for detecting two bosons (b) and fermions (c) at locations r and q. Note the checkered pattern for fermions. d, Probability distribution for the distance between two co-localizing bosons (blue) and fermions (red). eh, Simulations as in ad, but for two particles launched at sites −1 and +1. Figure reproduced with permission from ref. 60, © 2010 APS.

  4. Experimental measurements of quantum correlations in a 1D photonic lattice.
    Figure 4: Experimental measurements of quantum correlations in a 1D photonic lattice.

    a, Intensity–intensity correlations measured for light launched into site 0. b, Intensity correlation as a function of distance between the waveguides. The oscillatory correlation echoes the quantum distribution for indistinguishable bosons. Figure reproduced with permission from ref. 62, © 2011 APS.


  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 14921505 (1958).
  2. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 21692172 (1984).
  3. Anderson, P. W. The question of classical localization: A theory of white paint. Phil. Mag. B 52, 505509 (1985).
  4. John, S. Strong localization of photons near in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 24862489 (1987).
  5. Dalichaouch, R. et al. Microwave localization by 2-dimensional random scattering. Nature 354, 5355 (1991).
  6. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671673 (1997).
  7. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850853 (2000).
  8. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).
  9. De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 4750 (1989).
  10. Abdullaev, S. S. & Abdullaev, F. K. On light propagation in a system of tunnel-coupled waveguides. Izv. Vuz. Radioz. 23, 766 (1980).
  11. Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in a nonlinear array of coupled waveguides. Opt. Lett. 13, 794796 (1988).
  12. Eisenberg, H. et al. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 33833386 (1998).
  13. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147150 (2003).
  14. Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behavior in linear and nonlinear waveguide lattices. Nature 424, 817823 (2003).
  15. Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1126 (2008).
  16. Eisenberg, H. Nonlinear Effects in Waveguide Arrays PhD dissertation, Weizmann Institute of Science (2002).
  17. Pertsch, T. et al. Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93, 053901 (2004).
  18. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 5255 (2007).
  19. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).
  20. Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).
  21. Szameit, A. et al. Wave localization at the boundary of disordered photonic lattices. Opt. Lett. 35, 11721174 (2010).
  22. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 15411544 (2011).
  23. Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891894 (2008).
  24. Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895898 (2008).
  25. Sperling, T., Buhrer, W., Aegerter, C. M. & Maret, G. Direct determination of the transition to localization in three dimensions. Nature Photon. 7, 4852 (2013).
  26. Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco, B. Three-dimensional Anderson localization of ultracold matter. Science 334, 6668 (2011).
  27. Jendrzejewski, F. et al. Three dimensional localization of ultracold atoms in an optical trap. Nature Phys. 8, 398403 (2012).
  28. Belitz, D. & Kirkpatrick, T. R. The Anderson–Mott transition. Rev. Mod. Phys. 66, 261380 (1994).
  29. Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-electron states. Ann. Physics. 321, 11261205 (2006).
  30. Frohlich, J., Spencer, T. & Wayne, C. E. Localization in disordered nonlinear dynamical systems. J. Stat. Phys. 42, 247274 (1986).
  31. Pikovsky, A. S. & Shepelyansky, D. L. Destruction of Anderson localization by weak nonlinearity. Phys. Rev. Lett. 100, 094101 (2008).
  32. Flach, S., Krimer, D. O. & Skokos, C. Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett. 102, 024101 (2009).
  33. Fishman, S., Krivolapov, Y. & Soffer, A. Perturbation theory for nonlinear Schrödinger equation with random potential. Nonlinearity 22, 28622887 (2009).
  34. Fishman, S., Krivolapov, Y. & Soffer, A. The nonlinear Schrödinger equation with a random potential: results and puzzles. Nonlinearity 25, R53R72 (2012).
  35. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 19511953 (1984).
  36. Levine, D. & Steinhardt, P. J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 24772480 (1984).
  37. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nature Photon. 7, 177187.
  38. Rieth, T. & Schreiber, M. The Anderson transition in three-dimensional quasiperiodic lattices: Finite-size scaling and critical exponent. Z. Phys. B 104, 99102 (1997).
  39. Fujiwara, T., Yamamoto, S. & Trambly de Laissardière, G. Band structure effects of transport properties in icosahedral quasicrystals. Phys. Rev. Lett. 71, 41664169 (1993).
  40. Mayou, D. et al. Evidence for unconventional electronic transport in quasicrystals. Phys. Rev. Lett. 70, 39153918 (1993).
  41. Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993996 (2005).
  42. Bratfalean, R. et al. Harmonic generation in a two-dimensional photonic quasicrystal. Opt. Lett. 30, 424426 (2005).
  43. Lifshitz, R., Arie, A. & Bahabad, A. Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett. 95, 133901 (2005).
  44. Freedman, B. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 11661169 (2006).
  45. Freedman, B., Lifshitz, R., Fleischer, J. W. & Segev, M. Phason dynamics in nonlinear photonic quasicrystals. Nature Mater. 6, 776781 (2007).
  46. Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 133140 (1980).
  47. Kraus, Y. E. et al. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
  48. Levi, L., Krivolapov, Y., Fishman, S. & Segev, M. Hyper-transport of light and stochastic acceleration by evolving disorder. Nature Phys. 8, 912917 (2012).
  49. Krivolapov, Y. et al. Super-diffusion in optical realizations of Anderson localization. New J. Phys. 14, 043047 (2012).
  50. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287337 (1985).
  51. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three dimensional elastic network. Nature Phys. 4, 945948 (2008).
  52. Zaslavskii, G. M. & Chirikov, B. V. Stochastic instability of nonlinear oscillation. Sov. Phys. Usp. 14, 549567 (1972).
  53. Jayannavar, A. M. & Kumar, N. Nondiffusive quantum transport in a dynamically disordered medium. Phys. Rev. Lett. 48, 553556 (1982).
  54. Golubovic, L., Feng, S. & Zeng, F. Classical and quantum superdiffusion in a time-dependent random potential. Phys. Rev. Lett. 67, 21152118 (1991).
  55. Rosenbluth, M. N. Comment on “Classical and quantum superdiffusion in a time-dependent random potential”. Phys. Rev. Lett. 69, 1831 (1992).
  56. Arvedson, E., Wilkinson, M., Mehlig, B. & Nakamura, K. Staggered ladder spectra. Phys. Rev. Lett. 96, 030601 (2006).
  57. Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008).
  58. Bromberg, Y., Lahini, Y., Morandotti, R. & Silberberg, Y. Classical and quantum correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904 (2009).
  59. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 15001503 (2010).
  60. Lahini, Y., Bromberg, Y., Christodoulides, D. N. & Silberberg, Y. Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010).
  61. Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012).
  62. Lahini, Y. et al. Hanbury Brown and Twiss correlations of Anderson localized waves. Phys. Rev. A 84, 041806(R) (2011).
  63. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 22782281 (1999).
  64. Rechtsman, M. C. et al. Amorphous photonic lattices: band gaps, effective mass and suppressed transport. Phys. Rev. Lett. 106, 193904 (2011).
  65. Butenko, A. V., Shalaev, V. M. & Stockman, M. I. Giant optical nonlinearities of impurities of fractal clusters. Sov. Phys. JETP 67, 6069 (1988).
  66. Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).
  67. Radic, J. et al. Anderson localization of a Tonks–Girardeau gas in potentials with controlled disorder. Phys. Rev. A 81, 063639 (2010).

Download references

Author information


  1. Physics Department, Technion – Israel Institute of Technology, Haifa 32000, Israel

    • Mordechai Segev
  2. Solid State Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel

    • Mordechai Segev
  3. Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

    • Yaron Silberberg
  4. CREOL/College of Optics, University of Central Florida, Orlando, Florida 32816, USA

    • Demetrios N. Christodoulides

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data