Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optically pumped room-temperature GaAs nanowire lasers

Abstract

Near-infrared lasers are important for optical data communication, spectroscopy and medical diagnosis. Semiconductor nanowires offer the possibility of reducing the footprint of devices for three-dimensional device integration and hence are being extensively studied in the context of optoelectronic devices1,2. Although visible and ultraviolet nanowire lasers have been demonstrated widely3,4,5,6,7,8,9,10,11, progress towards room-temperature infrared nanowire lasers has been limited because of material quality issues and Auger recombination12,13. (Al)GaAs is an important material system for infrared lasers that is extensively used for conventional lasers. GaAs has a very large surface recombination velocity, which is a serious issue for nanowire devices because of their large surface-to-volume ratio14,15. Here, we demonstrate room-temperature lasing in core–shell–cap GaAs/AlGaAs/GaAs nanowires by properly designing the Fabry–Pérot cavity, optimizing the material quality and minimizing surface recombination. Our demonstration is a major step towards incorporating (Al)GaAs nanowire lasers into the design of nanoscale optoelectronic devices operating at near-infrared wavelengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and optical characterization of the nanowires.
Figure 2: Low-temperature lasing characteristics.
Figure 3: Room-temperature lasing characteristics.
Figure 4: Threshold gain for nanowire guided modes.

Similar content being viewed by others

References

  1. Yan, R. X., Gargas, D. & Yang, P. D. Nanowire photonics. Nature Photon. 3, 569–576 (2009).

    Article  ADS  Google Scholar 

  2. Yang, P., Yan, R. & Fardy, M. Semiconductor nanowire: what's next? Nano Lett. 10, 1529–1536 (2010).

    Article  ADS  Google Scholar 

  3. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

    Article  ADS  Google Scholar 

  4. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  ADS  Google Scholar 

  5. Gradecak, S., Qian, F., Li, Y., Park, H.-G. & Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 (2005).

    Article  ADS  Google Scholar 

  6. Agarwal, R., Barrelet, C. J. & Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5, 917–920 (2005).

    Article  ADS  Google Scholar 

  7. Zimmler, M. A., Bao, J., Capasso, F., Muller, S. & Ronning, C. Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008).

    Article  ADS  Google Scholar 

  8. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 7, 701–706 (2008).

    Article  ADS  Google Scholar 

  9. Chu, S. et al. Electrically pumped waveguide lasing from ZnO nanowires. Nature Nanotech. 6, 506–510 (2011).

    Article  ADS  Google Scholar 

  10. Xiao, Y. et al. Single-nanowire single-mode laser. Nano Lett. 11, 1122–1126 (2011).

    Article  ADS  Google Scholar 

  11. Pan, A. et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).

    Article  ADS  Google Scholar 

  12. Hua, B., Motohisa, J., Kobayashi, Y., Hara, S. & Fukui, T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 9, 112–116 (2008).

    Article  ADS  Google Scholar 

  13. Chin, A. H. et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006).

    Article  ADS  Google Scholar 

  14. Chang, C.-C. et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 12, 4484–4489 (2012).

    Article  ADS  Google Scholar 

  15. Jiang, N. et al. Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1–xAs core–shell nanowires. Appl. Phys. Lett. 101, 023111 (2012).

    Article  ADS  Google Scholar 

  16. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  ADS  Google Scholar 

  17. Mariano, A. Z., Federico, C., Sven, M. & Carsten, R. Optically pumped nanowire lasers: invited review. Semicond. Sci. Technol. 25, 024001 (2010).

  18. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  19. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  20. Ma, R.-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).

    Article  ADS  Google Scholar 

  21. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    Article  ADS  Google Scholar 

  22. Maslov, A. V. & Ning, C. Z. Reflection of guided modes in a semiconductor nanowire laser. Appl. Phys. Lett. 83, 1237–1239 (2003).

    Article  ADS  Google Scholar 

  23. Maslov, A. V. & Ning, C. Z. Modal gain in a semiconductor nanowire laser with anisotropic bandstructure. IEEE J. Quantum Electron. 40, 1389–1397 (2004).

    Article  ADS  Google Scholar 

  24. Saeta, P., Wang, J. K., Siegal, Y., Bloembergen, N. & Mazur, E. Ultrafast electronic disordering during femtosecond laser melting of GaAs. Phys. Rev. Lett. 67, 1023–1026 (1991).

    Article  ADS  Google Scholar 

  25. Ahrenkiel, R. K. Measurement of minority-carrier lifetime by time-resolved photoluminescence. Solid-State Electron. 35, 239–250 (1992).

    Article  ADS  Google Scholar 

  26. van Vugt, L. K., Rühle, S. & Vanmaekelbergh, D. Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 6, 2707–2711 (2006).

    Article  ADS  Google Scholar 

  27. Strauss, U., Ruhle, W. W. & Kohler, K. Auger recombination in intrinsic GaAs. Appl. Phys. Lett. 62, 55–57 (1993).

    Article  ADS  Google Scholar 

  28. Nelson, R. J. & Sobers, R. G. Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

    Article  ADS  Google Scholar 

  29. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  30. Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Australian Research Council (ARC) for financial support, the National Computational Infrastructure (NCI) for providing the computational resources used for this work, and the Australian Nano Fabrication Facility (ANFF) for technical support. The authors thank M. Lysevych, P. Sajewicz, K. Vora and P. Caroff for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.S., S.M., H.T. and C.J. conceived and designed the experiments. D.S. and S.M. carried out the modelling and theoretical analysis. N.J. and Q.G. optimized the growth conditions for the nanowires. D.S., S.M. and P.P. carried out the experiments. D.S. and S.M. wrote the manuscript, with contributions from all authors. D.S. and S.M. contributed equally to this work.

Corresponding authors

Correspondence to Dhruv Saxena or Sudha Mokkapati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 24910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, D., Mokkapati, S., Parkinson, P. et al. Optically pumped room-temperature GaAs nanowire lasers. Nature Photon 7, 963–968 (2013). https://doi.org/10.1038/nphoton.2013.303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing