Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiphoton absorption in amyloid protein fibres

Abstract

Fibrillization of peptides leads to the formation of amyloid fibres, which, when in large aggregates, are responsible for diseases such as Alzheimer's and Parkinson's1,2,3,4. Here, we show that amyloids have strong nonlinear optical absorption, which is not present in native non-fibrillized protein. Z-scan5 and pump–probe experiments indicate that insulin and lysozyme β-amyloids, as well as α-synuclein fibres, exhibit either two-photon, three-photon or higher multiphoton absorption processes, depending on the wavelength of light. We propose that the enhanced multiphoton absorption is due to a cooperative mechanism6 involving through-space dipolar coupling between excited states of aromatic amino acids densely packed in the fibrous structures. This finding will provide the opportunity to develop nonlinear optical techniques to detect and study amyloid structures and also suggests that new protein-based materials with sizable multiphoton absorption could be designed for specific applications in nanotechnology, photonics and optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection method for determining nonlinear absorption in amyloid fibrils.
Figure 2: Diagram presenting number of photons absorbed versus wavelength.
Figure 3: Diagram of nonlinear absorption at different wavelengths in the visible and infrared regions.
Figure 4

Similar content being viewed by others

References

  1. Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  ADS  Google Scholar 

  2. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  Google Scholar 

  3. Murphy, R. M. Peptide aggregation in neurodegenerative disease. Annu. Rev. Biochem. 4, 155–174 (2002).

    Google Scholar 

  4. Rochet, J. C. & Lansbury, P. T. Jr. Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10, 60–68 (2000).

    Article  Google Scholar 

  5. Sheikh-Bahae, M., Said, A. A., Wei, T., Hagan, D. J. & van Stryland, E. W. Sensitive measurement of optical nonlinearites using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

    Article  ADS  Google Scholar 

  6. Collini, E. Cooperative effects to enhance two-photon absorption efficiency: intra- versus inter-molecular approach. Phys. Chem. Chem. Phys. 14, 3725–3736 (2012).

    Article  Google Scholar 

  7. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  ADS  Google Scholar 

  8. Jimenez, J. L., Nettleton, E. J., Bouchard, M., Robison, C. V. & Dobson, C. M. The protofilament structure of insulin amyloid fibrils. Proc. Natl Acad. Sci. USA 99, 9196–9201 (2002).

    Article  ADS  Google Scholar 

  9. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    Article  ADS  Google Scholar 

  10. Samoc, M., Morrall, J. P., Dalton, G. T., Cifuentes, M. P. & Humphrey, M. G. Two-photon and three-photon absorption in an organometallic dendrimer. Angew. Chem. Int. Ed. 46, 731–733 (2007).

    Article  Google Scholar 

  11. Schwich, T., Cifuentes, M. P., Gugger, P. A., Samoc, M. & Humphrey, M. G. Electronic, molecular weight, molecular volume, and financial cost-scaling and comparison of two-photon absorption efficiency in disparate molecules. Adv. Mater. 23, 1433–1435 (2011).

    Article  Google Scholar 

  12. Samoc, M. et al. in Multiphoton Processes in Organics and Their Application (eds Rau, I. & Kajzar, F.) Ch. 7, 341–355 (Old City, 2011).

    Google Scholar 

  13. Hanczyc, P., Norden, B. & Samoc, M. Two-photon absorption of metal–organic DNA-probes. Dalton Trans. 41, 3123–3125 (2012).

    Article  Google Scholar 

  14. Meshalkin, Y. Two-photon absorption cross sections of aromatic amino acids and proteins. Quantum Electron. 26, 536–537 (1996).

    Article  ADS  Google Scholar 

  15. Samoc, M., Samoc, A. & Grote, J. G. Complex nonlinear refractive index of DNA. Chem. Phys. Lett. 431, 132–134 (2006).

    Article  ADS  Google Scholar 

  16. Rativa, D., da Silva, S. J. S., Del Nero, J., Gomes, A. S. L. & de Araujo, R. E. Nonlinear optical properties of aromatic amino acids in the femtosecond regime. J. Opt. Soc. Am. B 27, 2665–2668 (2010).

    Article  ADS  Google Scholar 

  17. Roberts, R. L. et al. Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv. Mater. 21, 2318–2322 (2009).

    Article  Google Scholar 

  18. McDonagh, A. M., Humphrey, M. G., Samoc, M. & Luther-Davies, B. Organometallic complexes for nonlinear optics. 17.1 Synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkynylruthenium dendrimer. Organometallics 18, 5195–5197 (1999).

    Article  Google Scholar 

  19. Chung, S. J. et al. Cooperative enhancement of two-photon absorption in multi-branched structures. J. Phys. Chem. B 103, 10741–10745 (1999).

    Article  Google Scholar 

  20. Drobizhev, M. et al. Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays. J. Am. Chem. Soc. 128, 12432–12433 (2006).

    Article  Google Scholar 

  21. Friedman, R. Aggregation of amyloids in a cellular context: modelling and experiment. Biochem. J. 438, 415–426 (2011).

    Article  Google Scholar 

  22. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  ADS  Google Scholar 

  23. Lundberg, E. P. et al. Nanofabrication yields. Hybridization and click-fixation of polycyclic DNA nanoassemblies. ACS Nano 5, 7565–7575 (2011).

    Article  Google Scholar 

  24. Fändrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).

    Article  ADS  Google Scholar 

  25. Voropai, E. S. et al. Spectral properties of thioflavin T and its complexes with amyloid fibrils. J. Appl. Spectrosc. 70, 868–874 (2003).

    Article  ADS  Google Scholar 

  26. Viles, J. H. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord. Chem. Rev. 256, 2271–2284 (2012).

    Article  Google Scholar 

  27. McCubbin, W. D., Kay, C. M., Narindrasorasak, S. & Kisilevsky, R. Circular-dichroism studies on two murine serum amyloid A proteins. Biochem. J. 256, 775–783 (1988).

    Article  Google Scholar 

  28. Markowicz, P. P. et al. Modified Z-scan techniques for investigations of nonlinear chiroptical effects. Opt. Express 12, 5209–5014 (2004).

    Article  ADS  Google Scholar 

  29. Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnol. 21, 803–806 (2003).

    Article  Google Scholar 

  30. Williams, R. M., Zipfel, W. R. & Webb, W. W. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88, 1377–1386 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by a Foundation for Polish Science ‘Welcome’ grant to M.S. and a European Research Council advanced senior grant to B.N.

Author information

Authors and Affiliations

Authors

Contributions

P.H. conceived and carried out the experiments. P.H., M.S. and B.N. analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Bengt Norden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 774 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanczyc, P., Samoc, M. & Norden, B. Multiphoton absorption in amyloid protein fibres. Nature Photon 7, 969–972 (2013). https://doi.org/10.1038/nphoton.2013.282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing