Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Petahertz optical oscilloscope

Abstract

The time-dependent field of an electromagnetic pulse can be measured if there is a fast enough gate. For terahertz radiation, femtosecond photoinjection of free carriers into a semiconductor in the presence of the terahertz radiation can serve as the gate1. For visible or infrared radiation, attosecond photoionization of a gas target in the presence of the optical field is a direct analogue2,3,4,5,6,7,8. Here, we show that nonlinear optical mixing9,10,11,12,13 in a medium in which attosecond pulses are being generated can also be used to measure the time-dependent field of an optical pulse. The gate is the phase accumulated by the recollision electron during the subcycle time interval between ionization and recombination. We show that the instantaneous field of an unknown pulse is imprinted onto the deflection of the attosecond extreme ultraviolet pulse using an all-optical set-up with a bandwidth up to 1 PHz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic idea of the petahertz optical oscilloscope.
Figure 2: Schematic set-up of the petahertz optical oscilloscope and theoretical calculations.
Figure 3: Waveform measurement of few-cycle pulses.
Figure 4: Waveform measurement of few-cycle pulses with different CEPs.

Similar content being viewed by others

References

  1. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    Article  ADS  Google Scholar 

  2. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  3. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  4. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  5. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  6. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article  ADS  Google Scholar 

  7. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  8. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article  ADS  Google Scholar 

  9. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    Article  ADS  Google Scholar 

  10. Bertrand, J. B. et al. Ultrahigh-order wave mixing in noncollinear high harmonic generation. Phys. Rev. Lett. 106, 023001 (2011).

    Article  ADS  Google Scholar 

  11. Dahlström, J., L'Huillier, A. & Mauritsson, J. Quantum mechanical approach to probing the birth of attosecond pulses using a two-colour field. J. Phys. B 44, 095602 (2011).

    Article  ADS  Google Scholar 

  12. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article  ADS  Google Scholar 

  13. Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Phys. 9, 159–163 (2013).

    Article  ADS  Google Scholar 

  14. Shverdin, M., Walker, D., Yavuz, D., Yin, G.-Y. & Harris, S. E. Generation of a single-cycle optical pulse. Phys. Rev. Lett. 94, 033904 (2005).

    Article  ADS  Google Scholar 

  15. Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photon. 4, 33–36 (2009).

    Article  ADS  Google Scholar 

  16. Huang, S. et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nature Photon. 5, 475–479 (2011).

    Article  ADS  Google Scholar 

  17. Chan, H. et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics. Science 331, 1165–1168 (2011).

    Article  ADS  Google Scholar 

  18. Kling, M. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    Article  ADS  Google Scholar 

  19. Trebino, R. Measuring the seemingly immeasurable. Nature Photon. 5, 189–192 (2011).

    Article  ADS  Google Scholar 

  20. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  21. Lewenstein, M., Salières, P. & L'Huillier, A. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747 (1995).

    Article  ADS  Google Scholar 

  22. Yakovlev, V. S., Ivanov, M. & Krausz, F. Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases. Opt. Express 15, 15351–15364 (2007).

    Article  ADS  Google Scholar 

  23. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

    Article  ADS  Google Scholar 

  24. Kim, K. T., Kim, C. M., Baik, M. G., Umesh, G. & Nam, C. H. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805 (2004).

    Article  ADS  Google Scholar 

  25. López-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

    Article  ADS  Google Scholar 

  26. Mairesse, Y. et al. High-order harmonic transient grating spectroscopy in a molecular jet. Phys. Rev. Lett. 100, 143903 (2008).

    Article  ADS  Google Scholar 

  27. Austin, D. R. et al. Lateral shearing interferometry of high-harmonic wavefronts. Opt. Lett. 36, 1746–1748 (2011).

    Article  ADS  Google Scholar 

  28. Bertrand, J. B., Wörner, H. J., Salières, P., Villeneuve, D. M. & Corkum, P. B. Linked attosecond phase interferometry for molecular frame measurements. Nature Phys. 9, 174–178 (2013).

    Article  ADS  Google Scholar 

  29. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Crane and B. Avery for technical assistance. The authors also acknowledge financial support from Canada's NRC (National Research Council of Canada) and NSERC (Natural Sciences and Engineering Research Council of Canada), the US AFOSR (Air Force Office of Scientific Research) and the DARPA (Defense Advanced Research Projects Agency) PULSE (Program in Ultrafast Laser Science and Engineering) programme through a grant by AMRDEC (the US Army Aviation and Missile Research, Development and Engineering Center).

Author information

Authors and Affiliations

Authors

Contributions

K.T.K. conceived the idea. F.L., D.M.V. and P.B.C. supervised the project. K.T.K., C.Z., A.D.S. and B.E.S. performed the experiment and collected the data. K.T.K analysed the experimental data. K.T.K. and D.M.V. provided the numerical analysis. All authors contributed in writing the manuscript.

Corresponding author

Correspondence to P. B. Corkum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 708 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Zhang, C., Shiner, A. et al. Petahertz optical oscilloscope. Nature Photon 7, 958–962 (2013). https://doi.org/10.1038/nphoton.2013.286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing