Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced two-photon excited fluorescence from imaging agents using true thermal light

Abstract

Two-photon excited fluorescence (TPEF) is a standard technique in modern microscopy1, but is still affected by photodamage to the probe. It has been proposed that TPEF can be enhanced using entangled photons2,3, but this has proven challenging. Recently, it was shown that some features of entangled photons can be mimicked with thermal light, which finds application in ghost imaging4, subwavelength lithography5 and metrology6. Here, we use true thermal light from a superluminescent diode to demonstrate TPEF that is enhanced compared to coherent light, using two common fluorophores and luminescent quantum dots, which suit applications in imaging and microscopy. We find that the TPEF rate is directly proportional to the measured7 degree of second-order coherence, as predicted by theory. Our results show that photon bunching in thermal light can be exploited in two-photon microscopy, with the photon statistic providing a new degree of freedom.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the experimental set-up.
Figure 2: Comparison of excitation with thermal and coherent light.

Similar content being viewed by others

References

  1. Denk, W., Strickler, J. & Webb, W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  2. Fei, H.-B., Jost, B. M., Popescu, S., Saleh, B. E. A. & Teich, M. C. Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78, 1679–1682 (1997).

    Article  ADS  Google Scholar 

  3. Jechow, A., Heuer, A. & Menzel, R. High brightness, tunable biphoton source at 976 nm for quantum spectroscopy. Opt. Express 16, 13439–13449 (2008).

    Article  ADS  Google Scholar 

  4. Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602 (2004).

    Article  ADS  Google Scholar 

  5. Cao, D.-Z., Ge, G.-J. & Wang, K. Two-photon subwavelength lithography with thermal light. Appl. Phys. Lett. 97, 051105 (2010).

    Article  ADS  Google Scholar 

  6. Zhu, J., Chen, X., Huang, P. & Zeng, G. Thermal-light-based ranging using second-order coherence. Appl. Opt. 51, 4885–4890 (2012).

    Article  ADS  Google Scholar 

  7. Boitier, F., Godard, A., Rosencher, E. & Fabre, C. Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nature Phys. 5, 267–270 (2009).

    Article  ADS  Google Scholar 

  8. Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    Article  ADS  Google Scholar 

  9. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  10. Göppert-Mayer, M. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. (Berlin) 401, 273–294 (1931).

    Article  ADS  Google Scholar 

  11. Kaiser, W. & Garrett, C. G. B. Two-photon excitation in CaF2: Eu2+. Phys. Rev. Lett. 7, 229–231 (1961).

    Article  ADS  Google Scholar 

  12. Teich, M. C. & Wolga, G. J. Multiple-photon processes and higher order correlation functions. Phys. Rev. Lett. 16, 625–628 (1966).

    Article  ADS  Google Scholar 

  13. Lambropoulos, P., Kikuchi, C. & Osborn, R. K. Coherence and two-photon absorption. Phys. Rev. 144, 1081–1086 (1966).

    Article  ADS  Google Scholar 

  14. Mollow, B. R. Two-photon absorption and field correlation functions. Phys. Rev. 175, 1555–1563 (1968).

    Article  ADS  Google Scholar 

  15. Shiga, F. & Imamura, S. Experiment on relation between two-photon absorption and coherence of light. Phys. Lett. A 25, 706–707 (1967).

    Article  ADS  Google Scholar 

  16. Pittman, T. B., Shih, Y. H., Strekalov, D. V. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995).

    Article  ADS  Google Scholar 

  17. Saleh, B. E. A., Abouraddy, A. F., Sergienko, A. V. & Teich, M. C. Duality between partial coherence and partial entanglement. Phys. Rev. A 62, 043816 (2000).

    Article  ADS  Google Scholar 

  18. Ragy, S. & Adesso, G. Nature of light correlations in ghost imaging. Sci. Rep. 2, 651 (2012).

    Article  ADS  Google Scholar 

  19. Karmakar, S., Meyers, R. & Shih, Y. H. Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light. Proc. SPIE 8518, 851805 (2012).

    Article  Google Scholar 

  20. Lee, T.-P., Burrus, C. A. & Miller, B. I. A stripe-geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode. IEEE J. Quant. Electron. 9, 820–828 (1973).

    Article  ADS  Google Scholar 

  21. Blazek, M. & Elsäßer, W. Coherent and thermal light: tunable hybrid states with second-order coherence without first-order coherence. Phys. Rev. A 84, 063840 (2011).

    Article  ADS  Google Scholar 

  22. Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).

    Article  ADS  Google Scholar 

  23. Taylor, M. A. et al. Biological measurement beyond the quantum limit. Nature Photon. 7, 229–233 (2013).

    Article  ADS  Google Scholar 

  24. Boitier, F. et al. Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor. Nature Commun. 2, 425 (2011).

    Article  ADS  Google Scholar 

  25. Aßmann, M., Veit, F., Bayer, M., van der Poel, M. & Hvam, J. M. Higher-order photon bunching in a semiconductor microcavity. Science 325, 297–300 (2009).

    Article  ADS  Google Scholar 

  26. Stevens, M. J. et al. High-order temporal coherences of chaotic and laser light. Opt. Express 18, 1430–1437 (2010).

    Article  ADS  Google Scholar 

  27. Jechow, A. et al. Stripe-array diode-laser in an off-axis external cavity: theory and experiment. Opt. Express 17, 19599–19604 (2009).

    Article  ADS  Google Scholar 

  28. Jechow, A., Schedel, M., Stry, S., Sacher, J. & Menzel, R. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm. Opt. Lett. 32, 3035–3037 (2007).

    Article  ADS  Google Scholar 

  29. Ryan, R. E., Westling, L. A., Blümel, R. & Metcalf, H. J. Two-photon spectroscopy: a technique for characterizing diode-laser noise. Phys. Rev. A 52, 3157–3169 (1995).

    Article  ADS  Google Scholar 

  30. Agarwal, G. S. Field-correlation effects in multiphoton absorption processes. Phys. Rev. A 1, 1445–1459 (1970).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Kiethe for help with g(2) measurements and D. Puhlmann for helping with the preparation of the graphics for the manuscript. This work was funded by the German Federal Ministry for Education and Research (BMBF), Germany (grant no. 13N11131).

Author information

Authors and Affiliations

Authors

Contributions

M.S., A.H. and R.M. designed the experiment. H.K., A.J. and M.S. conducted the experiment, collected the data and analysed the data. The manuscript was prepared by A.J. with contributions from M.S., H.K., A.H. and R.M.

Corresponding author

Correspondence to Andreas Jechow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jechow, A., Seefeldt, M., Kurzke, H. et al. Enhanced two-photon excited fluorescence from imaging agents using true thermal light. Nature Photon 7, 973–976 (2013). https://doi.org/10.1038/nphoton.2013.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing