Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-power fibre lasers

Subjects

Abstract

Fibre lasers are now associated with high average powers and very high beam qualities. Both these characteristics are required by many industrial, defence and scientific applications, which explains why fibre lasers have become one of the most popular laser technologies. However, this success, which is largely founded on the outstanding characteristics of fibres as an active medium, has only been achieved through researchers around the world striving to overcome many of the limitations imposed by the fibre architecture. This Review focuses on these limitations, both past and current, and the creative solutions that have been proposed for overcoming them. These solutions have enabled fibre lasers to generate the highest diffraction-limited average power achieved to date by solid-state lasers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the average output power of nearly diffraction limited fibre lasers (emitting either a continuous wave or ultrashort pulses) over the past 25 years.
Figure 2: Schematic of a high-power, double-clad fibre amplifier.
Figure 3: Evolution of pulse energy versus average output power of single-emitter femtosecond fibre lasers since 2002.
Figure 4: Schematic of mode instabilities.
Figure 5: Process leading to the creation of a thermally induced index grating in an active fibre.

Similar content being viewed by others

References

  1. Gloge, D. Optical fibres for communication. Appl. Opt. 13, 249–254 (1974).

    Article  ADS  Google Scholar 

  2. Kao, C. K. & Davies, T. W. Spectroscopic studies of ultra-low loss optical glasses I: single beam method. J. Sci. Instrum. 21, 1063–1068 (1968).

    Article  ADS  Google Scholar 

  3. Kapron, F. P. & Keck, D. B. Pulse transmission through a dielectric optical waveguide. Appl. Opt. 10, 1519–1523 (1971).

    Article  ADS  Google Scholar 

  4. Snitzer, E. Proposed fibre cavities for optical masers. J. App. Phys. 32, 36–39 (1961).

    Article  ADS  Google Scholar 

  5. Snitzer, E. Neodymium glass laser in Proc. Third Int. Congress Quant. Electron. (eds Grivet, P. & Bloembergen, N.) 999–1019 (Columbia Univ. Press, 1964).

    Google Scholar 

  6. Poole, S. B., Payne, D. N. & Fermann, M. E. Fabrication of low-loss optical fibres containing rare-earth ions. Electron. Lett. 21, 737–738 (1985).

    Article  ADS  Google Scholar 

  7. Mears, R. J., Reekie, L., Poole, S. B. & Payne, D. N. Neodymium-doped silica single-mode fibre laser. Electron. Lett. 21, 738–740 (1985).

    Article  ADS  Google Scholar 

  8. Snitzer, E., Po, H., Hakimi, F., Tumminelli, R. & McCollum, B. C. Double clad, offset core Nd fibre laser. Paper PD5 in Proc. Opt. Fib. Sensors 2 (OSA, 1988).

  9. Maurer, R. Optical waveguide light source. US patent 3,808,549 (1974).

  10. Minelly, J. D., Taylor, E. R., Jedrzejewski, K. P., Wang, J. & Payne, D. N. Laser-diode-pumped Nd-doped fibre laser with output power>lW. Paper 246 in Proc. CLEO (1992).

  11. Dominic, V. et al. 110 W fibre laser. Electron. Lett. 35, 1158–1160 (1999).

    Article  Google Scholar 

  12. Jeong, Y., Sahu, J. K., Payne, D. N. & Nilsson, J. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power. Electron. Lett. 40, 470–472 (2004).

    Article  Google Scholar 

  13. Gapontsev, V., Fomin, F. A. & Abramov, M. Diffraction limited ultra-high-power fibre lasers. Paper AWA1 in Proc. Adv. Solid-State Photon. Topical Meeting (OSA, 2010).

  14. Röser, F. et al. 131 W 220 fs fibre laser system. Opt. Lett. 30, 2754–2756 (2005).

    Article  ADS  Google Scholar 

  15. Eidam, T. et al. Femtosecond fibre CPA system emitting 830 W average output power. Opt. Lett. 35, 94–96 (2010).

    Article  ADS  Google Scholar 

  16. Erdogan, T. Fibre grating spectra. J. Lightwave Tech. 15, 1277–1294 (1997).

    Article  ADS  Google Scholar 

  17. Pask, H. M. et al. Ytterbium-doped silica fibre lasers: versatile sources for the 1–12 μm region. IEEE J. Sel. Top. Quant. Electron. 1, 2–13 (1995).

    Article  ADS  Google Scholar 

  18. Minelly, J. D. et al. High gain fibre power amplifier tandem-pumped by a 3 W multistripe diode. In Proc. Opt. Fib. Commun. Conf. 32–33 (IEEE, 1992).

  19. Agrawal, G. P. Nonlinear Fibre Optics (Academic, 1995).

    Google Scholar 

  20. Kobyakov, A., Sauer, M. & Chowdhury, D. Stimulated Brillouin scattering in optical fibres. Adv. Opt. Photon. 2, 1–59 (2010).

    Article  Google Scholar 

  21. Melo, M., Berendt, M. O. & Sousa, J. M. High gain fibre power amplifier tandem-pumped by a 3 W multistripe diode. Paper 86011P in Proc. Fib. Lasers X: Technol., Systems, & Apps (SPIE, 2013).

  22. Horley, R. et al. Exploration of performance limits of fibre laser technology for directed energy applications. In Solid State and Diode Laser Technol. Rev. (DEPS, 2008).

  23. Li, M. et al. Al/Ge co-doped large mode area fibre with high SBS threshold. Opt. Express 15, 8290–8299 (2007).

    Article  ADS  Google Scholar 

  24. Mermelstein, M. D. et al. 11.2 dB SBS gain suppression in a large mode area Yb-doped optical fibre. Proc. of Fibre Lasers V: Technol, Systems, & Apps 6873, U63–U69 (SPIE, 2008).

  25. Smith, R. G. Optical power handling capacity of low loss optical fibres as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 2489–2494 (1972).

    Article  ADS  Google Scholar 

  26. Jauregui, C., Limpert, J. & Tünnermann, A. Derivation of Raman threshold formulas for CW double-clad fibre amplifiers. Opt. Express 17, 8476–8490 (2009).

    Article  ADS  Google Scholar 

  27. Nodop, D., Jauregui, C., Jansen, F., Limpert, J. & Tünnermann, A. Suppression of stimulated Raman scattering employing long period gratings in double-clad fibre amplifiers. Opt. Lett. 35, 2982–2984 (2010).

    Article  ADS  Google Scholar 

  28. Kim, J., Dupriez, P., Codemard, C., Nilsson, J. & Sahu, J. K. Suppression of stimulated Raman scattering in a high power Yb-doped fibre amplifier using a W-type core with fundamental mode cut-off. Opt. Express 14, 5103–5113 (2006).

    Article  ADS  Google Scholar 

  29. Alkeskjold, T. T. Large-mode-area ytterbium-doped fibre amplifier with distributed narrow spectral filtering and reduced bend sensitivity. Opt. Express 17, 16394–16405 (2009).

    Article  ADS  Google Scholar 

  30. Stolen, R. H. & Lin, C. Self-phase-modulation in silica optical fibres. Phys. Rev. A 17, 1448–1453 (1978).

    Article  ADS  Google Scholar 

  31. Lozovoy, V. V., Pastirk, I. & Dantus, M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. Opt. Lett. 29, 775–777 (2004).

    Article  ADS  Google Scholar 

  32. Farrow, R. L., Kliner, D. A. V., Hadley, G. R. & Smith, A. V. Peak-powerlimits on fibre amplifiers imposed by self-focusing. Opt. Lett. 31, 3423–3425 (2006).

    Article  ADS  Google Scholar 

  33. Schimpf, D. N. et al. Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity. Opt. Express 17, 18774–18781 (2009).

    Article  ADS  Google Scholar 

  34. Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fibre lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63–B92 (2010).

    Article  Google Scholar 

  35. Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335–337 (2000).

    Article  ADS  Google Scholar 

  36. Limpert, J. et al. High-power rod-type photonic crystal fibre laser. Opt. Express 13, 1055–1058 (2005).

    Article  ADS  Google Scholar 

  37. Di Teodoro, F., Hemmat, M. K., Morais, J. & Cheung, E. C. High peak power operation of a 100μm-core Yb-doped rod-type photonic crystal fibre amplifier. Paper 758006 in Proc. Fib. Lasers VII: Technol., Systems, & Apps (SPIE, 2010).

  38. Ramachandran, S. et al. Light propagation with ultralarge modal areas in optical fibres. Opt. Lett. 31, 1797–1799 (2006).

    Article  ADS  Google Scholar 

  39. Liu, C.-H. et al. Effectively single-mode chirally-coupled core fibre. Paper ME2 in Proc. Adv. Solid-State Photon. (OSA, 2007).

  40. Koplow, J. P., Kliner, D. A. V. & Goldberg, L. Single-mode operation of a coiled multimode fibre amplifier. Opt. Lett. 25, 442–444 (2000).

    Article  ADS  Google Scholar 

  41. Marciante, J. R. Gain filtering for single-spatial-mode operation of large-mode-area fibre amplifiers. IEEE J. Sel. Top. Quant. Electron. 15, 30–36 (2009).

    Article  ADS  Google Scholar 

  42. Eidam, T. et al. Preferential gain photonic-crystal fibre for mode stabilization at high average powers. Opt. Express 19, 8656–8661 (2011).

    Article  ADS  Google Scholar 

  43. Limpert, J. et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light: Sci. & Apps 1, 1–5 (2012).

    Article  Google Scholar 

  44. Laurila, M. et al. Distributed mode filtering rod fibre amplifier delivering 292W with improved mode stability. Opt. Express 20, 5742–5753 (2012).

    Article  ADS  Google Scholar 

  45. Stutzki, F. et al. High average power large-pitch fibre amplifier with robust single-mode operation. Opt. Lett. 36, 689–691 (2011).

    Article  ADS  Google Scholar 

  46. Jansen, F., Stutzki, F., Jauregui, C., Limpert, J. & Tünnermann, A. Avoided crossings in photonic crystal fibres. Opt. Express 19, 13578–13589 (2011).

    Article  ADS  Google Scholar 

  47. Eidam, T. et al. Fibre chirped-pulse amplification system emitting 3.8 GW peak power. Opt. Express 19, 255–260 (2011).

    Article  ADS  Google Scholar 

  48. Stutzki, F. et al. 26 mJ, 130 W Q-switched fibre-laser system with near-diffraction-limited beam quality. Opt. Lett. 37, 1073–1075 (2012).

    Article  ADS  Google Scholar 

  49. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  50. Dawson, J. W. et al. Analysis of the scalability of diffraction-limited fibre lasers and amplifiers to high average power. Opt. Express 16, 13240–13266 (2008).

    Article  ADS  Google Scholar 

  51. Eidam, T. et al. Experimental observations of the threshold-like onset of mode instabilities in high power fibre amplifiers. Opt. Express 19, 13218–13224 (2011).

    Article  ADS  Google Scholar 

  52. Otto, H.-J. et al. Temporal dynamics of mode-instabilities in high-power fibre lasers and amplifiers. Opt. Express 20, 15710–15722 (2012).

    Article  ADS  Google Scholar 

  53. Malvache, A., Chen, X., Durfee, C. G., Jullien, A. & Lopez-Martens, R. Multi-mJ pulse compression in hollow fibres using circular polarization. Appl. Phys. B 104, 5–9 (2011).

    Article  ADS  Google Scholar 

  54. Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

    Article  ADS  Google Scholar 

  55. Mack, M. E. Stimulated thermal light scattering in the picosecond regime. Phys. Rev. Lett. 22, 13–15 (1969).

    Article  ADS  Google Scholar 

  56. Jauregui, C., Eidam, T., Limpert, J. & Tünnermann, A. Impact of modal interference on the beam quality of high-power fibre amplifiers. Opt. Express 19, 3258–3271 (2011).

    Article  ADS  Google Scholar 

  57. Smith, A. V. & Smith, J. J. Mode instability in high power fibre amplifiers. Opt. Express 19, 10180–10192 (2011).

    Article  ADS  Google Scholar 

  58. Jauregui, C. et al. Temperature-induced index gratings and their impact on mode instabilities in high-power fibre laser systems. Opt. Express 20, 440–451 (2012).

    Article  ADS  Google Scholar 

  59. Hansen, K. R., Alkeskjold, T. T., Broeng, J. & Lægsgaard, J. Theoretical analysis of mode instability in high-power fibre amplifiers. Opt. Express 21, 1944–1971 (2013).

    Article  ADS  Google Scholar 

  60. Jauregui, C. et al. Physical origin of mode instabilities in high-power fibre laser systems. Opt. Express 20, 12912–12925 (2012).

    Article  ADS  Google Scholar 

  61. Smith, A. V. & Smith, J. J. Steady-periodic method for modeling mode instability in fibre amplifiers. Opt. Express 21, 2606–2623 (2013).

    Article  ADS  Google Scholar 

  62. Ward, B. G. et al. Origin of thermal modal instabilities in large mode area fibre amplifiers. Opt. Express 20, 11407–11422 (2012).

    Article  ADS  Google Scholar 

  63. Ward, B. G. Modeling of transient modal instability in fibre amplifiers. Opt. Express 21, 12053–12067 (2013).

    Article  ADS  Google Scholar 

  64. Naderi, S., Dajani, I., Madden, T. & Robin, C. Investigations of modal instabilities in fibre amplifiers through detailed numerical simulations. Opt. Express 21, 16111–16129 (2013).

    Article  ADS  Google Scholar 

  65. Hansen, K. R., Alkeskjold, T. T., Broeng, J. & Lægsgaard, J. Thermally induced mode coupling in rare-earth doped fibre amplifiers. Opt. Lett. 37, 2382–2384 (2012).

    Article  ADS  Google Scholar 

  66. Dong, L. Stimulated thermal Rayleigh scattering in optical fibres. Opt. Express 21, 2642–2656 (2013).

    Article  ADS  Google Scholar 

  67. Jauregui, C. et al. Passive mitigation strategies for mode instabilities in high-power fibre laser systems. Opt. Express 21, 19375–19386 (2013).

    Article  ADS  Google Scholar 

  68. Smith, A. V. & Smith, J. J. Increasing mode instability thresholds of fibre amplifiers by gain saturation. Opt. Express 21, 15168–15182 (2013).

    Article  ADS  Google Scholar 

  69. Ballato, J. et al. Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibres. Opt. Mater. Express 2, 153–160 (2012).

    Article  ADS  Google Scholar 

  70. Robin, C., Dajani, I., Zeringue, C., Ward, B. & Lanari, A. Gain-tailored SBS suppressing photonic crystal fibres for high power applications. Paper 82371D in Proc. Fib. Lasers IX: Technol., Systems, and Apps (SPIE, 2012).

  71. Otto, H.-J. et al. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Opt. Express 21, 17285–17298 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the German Federal Ministry of Education and Research (BMBF), the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 240460 'PECS', the Thuringian Ministry for Economy, Labour and Technology (TMWAT, project no. 2011FGR0103) with a European Social Fund (ESF) grant, and the Thuringian Ministry of Education, Science and Culture (TMBWK) under contract B514-10061 (green photonics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Jauregui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nature Photon 7, 861–867 (2013). https://doi.org/10.1038/nphoton.2013.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing