Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trapping light by mimicking gravitational lensing

Abstract

One of the most fascinating predictions of the theory of general relativity is the effect of gravitational lensing, the bending of light in close proximity to massive stellar objects. Recently, artificial optical materials have been proposed to study the various aspects of curved spacetimes, including light trapping and Hawking radiation. However, the development of experimental ‘toy’ models that simulate gravitational lensing in curved spacetimes remains a challenge, especially for visible light. Here, by utilizing a microstructured optical waveguide around a microsphere, we propose to mimic curved spacetimes caused by gravity, with high precision. We experimentally demonstrate both far-field gravitational lensing effects and the critical phenomenon in close proximity to the photon sphere of astrophysical objects under hydrostatic equilibrium. The proposed microstructured waveguide can be used as an omnidirectional absorber, with potential light harvesting and microcavity applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analogue of light deflection in a gravitational field and microstructured optical waveguide.
Figure 2: Structural and optical measurements of the sample.
Figure 3: Scattered field intensity around the microsphere.
Figure 4: Deflection angles.

Similar content being viewed by others

References

  1. Dyson, F. W., Eddington, A. S. & Davidson, C. A determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse of May 29, 1919. Phil. Trans. R. Soc. Lond. A 220, 291–333 (1920).

    Article  ADS  Google Scholar 

  2. Kramer, M. et al. Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006).

    Article  ADS  Google Scholar 

  3. Hafele, J. C. & Keating, R. E. Around-the-world atomic clocks: predicted relativistic time gains. Science 177, 166–168 (1972).

    Article  ADS  Google Scholar 

  4. Bennett, C. L. Cosmology from start to finish. Nature 440, 1126–1131 (2006).

    Article  ADS  Google Scholar 

  5. Everitt, C. W. F. et al. Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011).

    Article  ADS  Google Scholar 

  6. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  7. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  8. Shalaev, V. M. Transforming light. Science 322, 384–386 (2008).

    Article  Google Scholar 

  9. Li, J. & Pendry, J. B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).

    Article  ADS  Google Scholar 

  10. Lai, Y. et al. Illusion optics: the optical transformation of an object into another object. Phys. Rev. Lett. 102, 253902 (2009).

    Article  ADS  Google Scholar 

  11. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nature Mater. 9, 387–396 (2010).

    Article  ADS  Google Scholar 

  12. Leonhardt, U. & Philbin, T. G. General relativity in electrical engineering. New J. Phys. 8, 247 (2006).

    Article  ADS  Google Scholar 

  13. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    Article  ADS  Google Scholar 

  15. Alù, A. & Engheta, N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. Lett. 100, 113901 (2008).

    Article  ADS  Google Scholar 

  16. Valentine, J. et al. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    Article  ADS  Google Scholar 

  17. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon. 3, 461–463 (2009).

    Article  ADS  Google Scholar 

  18. Smolyaninov, I. I., Smolyaninova, V. N., Kildishev, A. V. & Shalaev, V. M. Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys. Rev. Lett. 102, 213901 (2009).

    Article  ADS  Google Scholar 

  19. Ergin, T. et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article  ADS  Google Scholar 

  20. Rahm, M., Roberts, D. A., Pendry, J. B. & Smith, D. R. Transformation-optical design of adaptive beam bends and beam expanders. Opt. Express 16, 11555–11567 (2008).

    Article  ADS  Google Scholar 

  21. Ma, Y. G., Ong, C. K., Tyc, T. & Leonhardt, U. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nature Mater. 8, 639–642 (2009).

    Article  ADS  Google Scholar 

  22. Cheng, Q., Cui, T. J., Jiang, W. X. & Cai, B. G. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006 (2010).

    Article  ADS  Google Scholar 

  23. Zentgraf, T. et al. Plasmonic Luneburg and Eaton lenses. Nature Nanotech. 6, 151–155 (2011).

    Article  ADS  Google Scholar 

  24. Leonhardt, U. & Piwnicki, P. Optics of nonuniformly moving media. Phys. Rev. A 60, 4301–4312 (1999).

    Article  ADS  Google Scholar 

  25. Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nature Phys. 5, 687–692 (2009).

    Article  ADS  Google Scholar 

  26. Narimanov, E. E. & Kildishev, A. V. Optical black hole: broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009).

    Article  ADS  Google Scholar 

  27. Chen, H., Miao, R.-X. & Li, M. Transformation optics that mimics the system outside a Schwarzschild black hole. Opt. Express 18, 15183–15188 (2010).

    Article  ADS  Google Scholar 

  28. Genov, D. A. Optical black-hole analogues. Nature Photon. 5, 76–78 (2011).

    Article  ADS  Google Scholar 

  29. Smolyaninov, I. I. & Narimanov, E. E. Metric signature transitions in optical metamaterials. Phys. Rev. Lett. 105, 067402 (2010).

    Article  ADS  Google Scholar 

  30. Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 99, 183901 (2007).

    Article  ADS  Google Scholar 

  31. Mackay, T. G. & Lakhtakia, A. Towards a metamaterial simulation of a spinning cosmic string. Phys. Lett. A 374, 2305–2308 (2010).

    Article  ADS  Google Scholar 

  32. Smolyaninov, I. I. & Hung, Y.-J. Modeling of time with metamaterials. J. Opt. Soc. Am. B 28, 1591–1595 (2011).

    Article  ADS  Google Scholar 

  33. Ginis, V., Tassin, P., Craps, B. & Veretennicoff, I. Frequency converter implementing an optical analogue of the cosmological redshift. Opt. Express 18, 5350–5355 (2010).

    Article  ADS  Google Scholar 

  34. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  35. Belgiorno, F. et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901 (2010).

    Article  ADS  Google Scholar 

  36. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, 1973).

    Google Scholar 

  37. De Felice, F. On the gravitational field acting as an optical medium. Gen. Relativ. Gravit. 2, 347–357 (1971).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Projects for Basic Researches of China (nos 2012CB933501, 2010CB630703 and 2012CB921500), the National Natural Science Foundation of China (nos 11074119, 60990320 and 11021403), the Louisiana Board of Regents and National Science Foundation (contract nos LEQSF (2007-12)-ENH-PKSFI-PRS-01, LEQSF (2011-14)-RD-A-18), the Project Funded by the Priority Academic Program development of Jiangsu Higher Education Institutions (PAPD), New Century Excellent Talents in University (NCET-10-0480), a doctoral program (20120091140005) and Dengfeng Project B of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

C.S., H.L., Y.W. and S.N.Z. proposed and carried out the experiment. D.A.G. contributed to the experimental characterization and interpretation, and proposed and developed the theory. D.A.G., C.S. and H.L. co-wrote the manuscript.

Corresponding author

Correspondence to H. Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 685 kb)

Supplementary Movie

Supplementary Movie (AVI 390 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, C., Liu, H., Wang, Y. et al. Trapping light by mimicking gravitational lensing. Nature Photon 7, 902–906 (2013). https://doi.org/10.1038/nphoton.2013.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing