Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linear momentum increase and negative optical forces at dielectric interface

Abstract

Light carries momenta that can be transferred to objects. Relying on gradient forces created by structured light, one can trap and move microscopic particles. Aside from the conservative action of gradient forces, light always pushes an object along its direction of propagation. Here, we demonstrate that gradientless light fields can exert pulling forces on arbitrary objects in a purely passive dielectric environment and without resorting to non-paraxial illumination, interference of multiple beams, gain or other exotic materials. The forces acting against the flow of light arise naturally due to the appropriate amplification of the photon linear momentum when light is scattered from one dielectric medium into another with higher refractive index. This situation opens up a number of intriguing prospects for optical forces and their effects on surface-bound objects. Here, we demonstrate that this new mechanism can be used to manipulate objects over macroscopic distances along dielectric interfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Forward momentum amplification and backward particle motion when a ray propagates from air into water through the scatterer.
Figure 2: Pulling action on particles bound to a water–air interface.
Figure 3: Optical force exerted on a lens-like oil droplet at a water–air interface.

Similar content being viewed by others

References

  1. Ruffner, D. B. & Grier, D. G. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109, 163903 (2012).

    Article  ADS  Google Scholar 

  2. Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nature Photon. 5, 531–534 (2011).

    Article  ADS  Google Scholar 

  3. Novitsky, A., Qiu, C.-W. & Wang, H. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 107, 203601 (2011).

    Article  ADS  Google Scholar 

  4. Mizrahi, A. & Fainman, Y. Negative radiation pressure on gain medium structures. Opt. Lett. 35, 3405–3407 (2010).

    Article  ADS  Google Scholar 

  5. Salandrino, A. & Christodoulides, D. N. Reverse optical forces in negative index dielectric waveguide arrays. Opt. Lett. 36, 3103–3105 (2011).

    Article  ADS  Google Scholar 

  6. Nieto-Vesperinas, M., Sáenz, J. J., Gómez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010).

    Article  ADS  Google Scholar 

  7. Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

    Article  ADS  Google Scholar 

  8. Brzobohatý, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nature Photon. 7, 123–127 (2013).

    Article  ADS  Google Scholar 

  9. Dogariu, A., Sukhov, S. & Saenz, J. J. Optically induced ‘negative forces’. Nature Photon. 7, 24–27 (2013).

    Article  ADS  Google Scholar 

  10. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  11. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  12. Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013).

    Article  ADS  Google Scholar 

  13. Li, M., Pernice, W. H. P. & Tang, H. X. Tunable bipolar optical interactions between guided lightwaves. Nature Photon. 3, 464–468 (2009).

    Article  ADS  Google Scholar 

  14. Wiederhecker, G. S., Chen, L., Gondarenko, A. & Lipson, M. Controlling photonic structures using optical forces. Nature 462, 633–636 (2009).

    Article  ADS  Google Scholar 

  15. Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197–1216 (2007).

    Article  ADS  Google Scholar 

  16. Milonni, P. W. & Boyd, R. W. Momentum of light in a dielectric medium. Adv. Opt. Photon. 2, 519–553 (2010).

    Article  Google Scholar 

  17. Møller, C. The Theory of Relativity 2nd edn (Oxford Univ. Press, 1972).

    Google Scholar 

  18. Balazs, N. L. The energy-momentum tensor of the electromagnetic field inside matter. Phys. Rev. 91, 408–411 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  19. Brevik, I. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 52, 133–201 (1979).

    Article  ADS  Google Scholar 

  20. Mikura, Z. Variational formulation of the electrodynamics of fluids and its application to the radiation pressure problem. Phys. Rev. A 13, 2265–2275 (1976).

    Article  ADS  Google Scholar 

  21. Gordon, P. Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 14–21 (1973).

    Article  ADS  Google Scholar 

  22. Jones, R. V. & Richards, J. C. S. The pressure of radiation in a refracting medium. Proc. R. Soc. Lond. A 221, 480–498 (1954).

    Article  ADS  Google Scholar 

  23. Jones, R. V. & Leslie, B. The measurement of optical radiation pressure in dispersive media. Proc. R. Soc. Lond. A 360, 347–363 (1978).

    Article  ADS  Google Scholar 

  24. Ashkin, A. & Dziedzic, J. M. Radiation pressure on a free liquid surface. Phys. Rev. Lett. 30, 139–142 (1973).

    Article  ADS  Google Scholar 

  25. De Gennes, P-G., Brochard-Wart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2003).

    MATH  Google Scholar 

  26. Pieranski, P. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett. 45, 569–572 (1980).

    Article  ADS  Google Scholar 

  27. Radoev, B., Nedjalkov, M. & Djakovich, V. Brownian motion at liquid–gas interfaces. 1. Diffusion coefficients of macroparticles at pure interfaces. Langmuir 8, 2962–2965 (1992).

    Article  Google Scholar 

  28. Mansuripur, M. Radiation pressure and the linear momentum of the electromagnetic field. Opt. Express 12, 5375–5401 (2004).

    Article  ADS  Google Scholar 

  29. Gao, Y. & Kilfoil, M. L. Accurate detection and complete tracking of large populations of features in three dimensions. Opt. Express 17, 4685–4704 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation (grant no. 1159530) and the Air Force Office of Scientific Research (no. FA9550-10-1-0190). C.-W.Q. acknowledges support from the National University of Singapore (grant no. R-263-000-678-133). The authors thank J. Czarnecki for discussions regarding the properties of surface-bound water–oil emulsions and F.E. Hernandez for assistance with chemical preparation.

Author information

Authors and Affiliations

Authors

Contributions

V.K., W.D., S.S., C.-W.Q. and A.D. designed the experiments, V.K. performed the experiments, W.D. and C.-W.Q. performed the theoretical simulations, S.S., C.-W.Q. and A.D. wrote the paper, C.-W.Q. and A.D. conceived the idea, and all authors contributed analysis tools.

Corresponding authors

Correspondence to Cheng-Wei Qiu or Aristide Dogariu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 635 kb)

Supplementary movie

Supplementary movie (AVI 2030 kb)

Supplementary movie

Supplementary movie (AVI 8269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajorndejnukul, V., Ding, W., Sukhov, S. et al. Linear momentum increase and negative optical forces at dielectric interface. Nature Photon 7, 787–790 (2013). https://doi.org/10.1038/nphoton.2013.192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing